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IINNTTRROODDUUCCTTIIOONN  

Components that are manufactured by sand casting have to be cleaned after they are cast 

to remove sand particles that are embedded on the surface of the components. This cleaning 

process is essential for critical parts like engine blocks, which should not have any foreign debris 

in them. There are usually different methods used for cleaning cast components depending on 

their size. Smaller components are usually tumble cleaned by rotating the components in a 

tumbler. The mechanical vibrations and collisions remove the embedded sand particles. On the 

other hand, big components like engine blocks cannot be cleaned by this method. They are 

usually cleaned by blasting them with high-pressure water jet. The water removes all the 

embedded sand particles and does not harm the surface, as the pressure involved is low for actual 

part erosion. Figure 1 shows a cast component before and after cleaning. It is essential that the 

sand particles be removed from the surface of such component to prevent the premature failure 

of the component. 

 

 

 
Figure 1: Cast component before and after cleaning 

 

The radius of the water jet nozzle used for the cleaning process is much smaller than the 

size of the part to be cleaned. Hence, these nozzles are rotated while being simultaneously 

moved along the surface of the part. Rotating the nozzles increases the area covered by the 

nozzles or the water accessible regions. This makes the actual cleaning process using water jet 

complex. Figure 2 shows the schematic of cleaning of a complex part using rotating water jet. 

The waterjet is rotated as well as moved simultaneously above a complex part and parts cleaned 

are shown as dots on the surface of the part. 
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Figure 2: Schematic of the actual cleaning process 

SIMPLIFIED PROCESS DESCRIPTION 

Since the actual process is too complex to model, we simplified the process so that it can 

be optimized in a smaller design space. It involves moving single non-rotating waterjet nozzle 

over the surface of the part to be cleaned. Various parameters like the water pressure, standoff 

distance, angle of attack etc. affect the final cleaning effectiveness. We also considered only a 

flat square plate of a fixed dimension for cleaning. 

 

Flat Geometry

Single Non-Rotating
Water Jet Straight Path

 
Figure 3: Simplified cleaning process 

 

The simplified cleaning process is shown in Figure 3. It shows a single nozzle which is 

positioned at a particular standoff distance from a flat surface. The water jet is moved in a 

straight path in discrete steps to simulate the motion of the nozzle. In addition, the angle of attack 

as well as the radius of the nozzle can be changed to optimize the process. 
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SSIIMMUULLAATTIIOONN  MMOODDEELL  

The water from the water jet is approximated by a set of rays as shown in Figure 4. The 

rays originate from the nozzle and have a pressure distribution that decays along the radial 

direction away from the center of the nozzle. The impact pressure is calculated at the points on 

the plate at which the rays hit the surface. Then based on the impact pressure, a quantity called 

the cleaning effectiveness is calculated.  

Pressure Distribution

Cleaning Width

 
Figure 4: Waterjet approximated as a set of rays 

 

A model for calculating the pressure distribution of a stationary waterjet [1] is established 

using equation(1). The nomenclature for the equation is listed in Table 1. This equation gives the 

impact pressure of the waterjet at any point on the surface of the plate. 

 

x

r

α
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Figure 5: Waterjet model 



Design Optimization 

Page 6 of 22 

 
32 1.5

0
07.95 1r rP k P

Cx Cx
λ ψ ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

 (1) 

 
Table 1: Nomenclature 

P  Impact pressure 

λ  Stress coefficient 

k  Flow resistance coefficient of water system 

ψ  Sound speed in water 

0P  Water pressure from the nozzle 

ρ  Density of water 

0r  Radius of nozzle 

r  Distance of the point of consideration from the waterjet centerline 

C  Jet spreading coefficient 

x  Standoff distance 

 

An example of the pressure distribution is shown in the figure below. In this case, the 

nozzle has an attack angle of 45°. 

 

 
Figure 6: Pressure distribution on a flat surface due to a waterjet at 45° angle 

 

 



Design Optimization 

Page 7 of 22 

CLEANING EFFECTIVENESS 

The ability of the water jet for cleaning the surface is correlated directly to the impact 

pressure of the waterjet on the surface. Higher impact pressures correlate to higher cleaning 

effectiveness. We use a cumulative normal distribution to correlate the pressure of the water jet 

with cleaning effectiveness as shown in Figure 7.  
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Figure 7: Correlation between impact pressure and cleaning effectiveness 

 

The simulation program calculates impact pressure on the surface due to all the positions 

of the nozzle on a set of discrete but sufficiently dense points on the flat surface. Based on this 

impact pressure, the cleaning effectiveness is calculated. Figure 8 shows the simulation of the 

waterjet on a flat plate. The colors on the plate indicate the cleaning effectiveness at a particular 

point. 

 
Figure 8: Simulation of a moving nozzle over a flat surface 
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PPRROOBBLLEEMM  FFOORRMMUULLAATTIIOONN  

We have a two-objective optimization problem. The first objective is to maximize the 

sum of the average cleaning effectiveness, averaged over the set of sample points S on the 

surface for all nozzle positions, N and the coverage fraction, which is the fraction of the total 

area accessible by water. This is given in equation (2) and is obtained as an output of the 

simulations, where C is the coverage fraction and e is the effectiveness calculated at each sample 

point of S.  

 1
N S N

CE e dA c dA e
S S

= + ≈ +∑ ∑∑∫ ∫  (2) 

 

The second objective function is to minimize the number of positions of the waterjet, 

which directly corresponds to the feed rate of movement of the nozzle. If there are more 

positions, then the cleaning effectiveness will be high but on the other hand, the time for the 

process will also be high.  

 

 tt k n= ⋅  (3) 

 

where kt is the constant time taken for each position and n is the number of positions. We 

assume that the distance moved in each step is constant and is inversely proportional to the 

number of steps. For the purpose of the simulations, we also assume kt to be unity. 

DESIGN VARIABLES AND PARAMETERS 

We are optimizing the cleaning process for the standoff distance (x), angle of attack (α), 

nozzle-radius (r0) and the number of steps (n). The number of steps is considered as a discrete 

variable as it can take only integer values. On the other hand, even though the available nozzle 

sizes are discrete, we can approximate it as a continuous variable to simplify the optimization. It 

can then be rounded off to the nearest available nozzle size after the optimization is completed.  

 

The simulation model also takes in some fixed parameters. These parameters include the 

waterjet pressure P0, jet-spreading coefficient C and flow resistance factor k. The model also 

needs some constants like density of water and speed of sound for the simulations.  
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CONSTRAINTS 

One of the main constraints for the simulation is that the impact pressure should not be 

very high that it damages the surface of the part being cleaned. There are some physical 

constraints on the maximum and minimum standoff distances. In addition, the total time or the 

number of steps cannot exceed a particular threshold. Similarly, there are some constraints on the 

angle of attack in the sense that it cannot be too obtuse. 

OOPPTTIIMMIIZZAATTIIOONN  

MULTI-OBJECTIVE FORMULATION 

The complete formulation for the multi-objective formulation is given below. Most of the 

constraints except the pressure constraint are direct constraints on the design variables. 

 

Maximize E (Cleaning effect given in equation (2)) 

Minimize t (Cleaning time given by equation (3)) 

 

subject to constraints 

P ≤ Pmax Maximum pressure 

n  ∈ {1,50} Number of positions of the nozzle 

x ≤ 0.1  Maximum standoff distance 

-x ≥ 0.05 Minimum standoff distance 

R0 ≤ 0.008 Maximum nozzle radius 

-R0 ≤ 0.0001 Minimum nozzle radius 

α ≤ 45  Maximum attack angle 

-α ≤ 0  Minimum attack angle 

SINGLE-OBJECTIVE FORMULATION 

Since we wanted to generate the Pareto frontier for the multi-objective formulation, we 

decided to implement it as a single-objective formulation using the ε-constraint method. We used 

the second objective as a constraint and optimized the first objective. The complete formulation 
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is given below. The second constraint directly gives the value for the number of steps for the 

simulations and it is taken as a constant during single objective optimization. 

 

Maximize E (Cleaning effect given in equation (2)) 

 

subject to constraints 

P ≤ Pmax Maximum pressure 

t = ε  Total time for cleaning. 

x ≤ 0.1  Maximum standoff distance 

-x ≥ 0.05 Minimum standoff distance 

R0 ≤ 0.008 Maximum nozzle radius 

-R0 ≤ 0.0001 Minimum nozzle radius 

α ≤ 45  Maximum attack angle 

-α ≤ 0  Minimum attack angle 

 

OPTIMIZATION METHOD 

From Equation (1) and (2), we can see that the objective function for the optimization 

problem is a complex and nonlinear one. Since the form of the objective function does not have 

an explicit expression, a black-box optimization technique is required to solve it. We decided to 

use Genetic Algorithm (GA) because of the following reasons. 

 

1. GA does not require gradient information. Because of the complexity of our objective 

function, it is difficult to get its gradient information. 

2. GA can handle both continuous and discrete variables simultaneously. In our problem, 

the step number is a discrete variable, but attack angle, nozzle radius and standoff 

distance are continuous variables. 

3. Most of the constraints in our problem are very simple – they are just boundary limits. 

This overcomes the difficulty of handling constraints in GA. 

4. There are many free GA libraries available. 
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IMPLEMENTATION 

We used a C++ genetic algorithm library – GAlib [3] for the implementation. The library 

includes tools for using GA to do optimization in any C++ program using user-defined genetic 

operators. We chose GAlib because it is written by C++, which is object oriented and hence can 

be seamlessly integrated with our simulation program. A simple optimization program using 

GAlib can be as short as three lines of codes and a user-defined objective function as shown in 

Figure 9. Furthermore, GAlib can handle simple constraints such as boundary limits, and 

supports continuous and discrete design variables, which make it ideal for our optimization 

problem. 

 

 
Figure 9: Simple GA optimization program using GAlib 

  

The general workflow of GAlib to solve an optimization problem is shown in Figure 10. 

Some of the important classes in GAlib are explained below. 

• GAGeneticAlgorithm represents a genetic algorithm. Four different flavors of genetic 

algorithms based on how new population is created are supported: the standard simple 

genetic algorithm, steady-state genetic algorithm, incremental genetic algorithm and 

deme genetic algorithm. 

• GAPopulation represents a population, which is a container for the genomes. Each 

population contains a scaling object that is used to determine the fitness of its genomes. 

• GAGenome represents a genome (chromosome). Three different data types of genomes 

are supported: binary, string, and float. In addition, three different configurations of 

genomes are supported: array, tree and list. Use can customize the crossover and mutator 

for genomes. 
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• GAAlleleSet represents a container for the different values that a gene may assume. An 

allele set may be enumerated, unbounded, bounded or bounded with discretization. By 

using GAAlleleSets, we can define simple constraints in optimization problems. 

 

Initialize population

Select individuals for mating

Mate individuals to produce 
offsprings

Mutate offsprings

Insert offsprings into 
population

Are stopping 
criteria satisfied ?

Finish

Y

N

 
Figure 10: General workflow of GAlib 

 
 

GAGeneticAlgorithmGAParameterList GAStatistics

GAScalingScheme

GASelectionScheme

GAPopulation

GAGenome GAAlleleSet

ObjectiveCrossover Mutation

 
Figure 11: Relationships between major classes in GAlib 
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The relationships between the major classes of GAlib are shown in Figure 3. They can be 

categorized into three groups: input (GAParameterList, GAScalingScheme, GASelectionScheme, 

Crossover function, Mutation function, and Objective function), core (GAGeneticAlgorithm, 

GAPopulation, GAGenome, and GAAlleleSet), and output (GAStatistics). 

GENETIC ALGORITHM IMPLEMENTATION 

In the following section, we discuss some implementation details of using GAlib for the 

cleanability optimization. We use the “simple genetic algorithm,” which is implemented in 

GASimpleGA class in the library. This algorithm uses non-overlapping populations and optional 

elitism. Each generation the algorithm creates an entirely new population of individuals. The 

parameters defined for the algorithm are listed in Table 2. We used the following parameters 

after experimenting with them. The parameters that were chosen finally usually guaranteed 

convergence. 

 
Table 2: GA parameters 

Parameter Name Value 

Population Size 100 

Number of Generations 200 

Mutation Probability 0.001 

Crossover Probability 0.9 

Generations to Convergence 20 

Convergence Percentage 0.99 

 

 

In this table, Number of Generations gives the maximum number of generations until 

which the GA is evolved. Evolution will stop if the number of generations exceeds this setting. 

Generations to Convergence and Convergence Percentage are used when convergence is used as 

the stop criteria. The convergence percentage is defined as the ratio of the Nth previous best-of-

generation score to the current best-of-generation score. N is defined by the Generations to 

Convergence parameter. 
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Objective function 

Since the simple genetic algorithm cannot enforce complex constraints, the constraints 

were incorporated in the fitness function itself. We tried different fitness functions and finally 

used the function given in equation (4) for the optimization. 

 

 max( ,0)f e c m= + −  (4) 

where  e is the cleaning effectiveness as calculated from equation (2) 

 c is the coverage effect or the fraction of the area accessible to the water jet 

 m is the pressure effect which is 1 if P > Pmax and 0 if P ≤ Pmax 

 

The max function is used to keep the objective functions always positive. This was one of 

the requirements of GAlib as it is not capable of handling negative objective functions.  

 

Genome 

We use genomes of the type of 1D-float arrays, which is implemented in the 

GARealGenome class. The size of the array is 4, and each element in the array represents the 

attack angle, standoff distance, nozzle radius and step number respectively. Since currently we 

do not have any knowledge about the property of the cleaning process, the population is 

initialized with randomized designs in the feasible region. 

 

Genome Operators 

For all the three-genome operators – selection, crossover and mutation, we use the 

predefined default behaviors of GARealGenome. For the selection, the default scheme is 

RouletteWheel, which is implemented in GARouletteWheelSelector class. It looks through the 

members of the population using a weighted roulette wheel. Likelihood of selection is 

proportional to the fitness score. 

 

For the crossover, the default scheme is Uniform Crossover, which is implemented in 

GARealUniformCrossover class. Uniform crossover is radically different to 1-point crossover. It 

randomly takes bits from parents. For each bit, we flip a coin to see if that bit should come from 

the mother or the father. For the mutation, the default scheme is Gaussian Mutation, which is 
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implemented in GARealGaussianMutator class. The Gaussian mutator picks a new value based 

on a Gaussian distribution around the current value and respects the bounds. 

 

Constraints 

By means of allele set, we can set up boundary constrains for the design variables. Allele 

set is implemented in GAAlleleSet. It acts as a container for the different design values that a 

gene can assume. It may be bounded, unbounded, or discrete. The allele sets we used for the four 

design variables are listed in Table 3. 

 
Table 3: Allele constraint sets for the design variables 

Design Variable Allele Set 

Attack Angle GAAlleleSet(0, 45) 

Standoff Distance GAAlleleSet(0.05, 0.1) 

Nozzle Radius GAAlleleSet(0.0001, 0.008) 

Step Number GAAlleleSet(1, 50, 1) 

 

Fitness Scaling 

Given a particular chromosome, the fitness function returns a single numerical “fitness,” 

which is supposed to be proportional to the ability of the individual for mating. It is a possibly 

transformed rating based on the raw objective score. In our program, we use the default linear 

scaling scheme, which is implemented in GALinearScaling. Objective scores are converted to 

fitness scores using the relation 

 f a obj b= +i  (5) 

where a and b are calculated based upon the objective scores of the individuals in the 

population. 

 

Stop Criteria 

GAlib supports three different stop criteria: TerminateUponGeneration, 

TerminateUponConvergence and TerminateUponPopConvergence. TerminateUponGeneration 

compares the current generation to the specified number of generations. 

TerminateUponConvergence compares the current convergence to the specified convergence 

value. TerminateUponPopConvergence compares the population average to the score of the best 
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individual in the population. In our program, we used the first two criteria, and both give the 

same optimum solution. 

RESULTS 

Using the ε-constraint method, we calculated the Pareto front for the optimization 

problem. Figure 12 shows the results of the optimization along with the Pareto front. The scale 

on y-axis is inverted to better interpret the results. One of the main notable features is that the 

exact values obtained from the optimization are not smooth and do not form a smooth curve. 

This can be attributed to numerical errors in the simulation program where the data is either 

truncated or approximated. 
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Figure 12: Results of the optimization showing the Pareto front (Note inverted scale on y-axis) 

 

 Each point on the above graph was averaged over three different GA runs. Since the 

simulation was slow, an average of only three runs was taken. The simulation took about an hour 
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for each point in the graph and took approximately 50 hours to construct the complete Pareto 

front. 

 
Table 4: Pareto optimal design points 

Steps Fitness Angle Standoff Radius L2 Norm L1 Norm Linf Norm 
2 0.1665 45 100 1.75 0.3173 0.3173 0.3173 
3 0.1757 45 100 1.88 0.2874 0.3067 0.2867 
4 0.1846 45 100 1.81 0.2601 0.2970 0.2570 
5 0.1947 45 100 2.08 0.2313 0.2833 0.2233 
6 0.2043 45 100 2.06 0.2074 0.2713 0.1913 
7 0.2136 45 100 2.07 0.1890 0.2603 0.1603 
8 0.2208 45 100 1.79 0.1816 0.2563 0.1363 
9 0.2272 45 100 1.64 0.1812 0.2550 0.1400 

10 0.2336 45 100 1.55 0.1854 0.2537 0.1600 
11 0.2389 45 100 1.61 0.1954 0.2560 0.1800 
12 0.2451 45 100 2.15 0.2075 0.2553 0.2000 
13 0.2495 45 100 1.92 0.2237 0.2607 0.2200 
14 0.2517 45 100 1.90 0.2423 0.2733 0.2400 
15 0.2542 45 100 1.84 0.2612 0.2850 0.2600 
16 0.2561 45 100 1.96 0.2806 0.2987 0.2800 
17 0.2587 45 100 2.05 0.3002 0.3100 0.3000 
18 0.2607 45 100 2.14 0.3200 0.3233 0.3200 
19 0.2598 45 100 2.01 0.3401 0.3463 0.3400 
20 0.2599 45 100 1.98 0.3600 0.3660 0.3600 
21 0.2617 45 100 2.15 0.3800 0.3800 0.3800 

 

Table 4 lists all the Pareto optimal design points. There are different methods to choose a 

particular design from the above table. We can use the ideal point as a reference and use it to 

choose the final design based on L2, L1 or the Linf Norm.  

 

The ideal point for the optimization is (2, 0.2617). Based on L2 Norm, the best design 

obtained is shown in yellow in the above table with number of steps as 9. On the other hand, the 

best design based on L1 Norm has 10 steps and the best design based on Linf Norm has 8 steps. 

The difference in the best optimal design based on these three Norms is not very much. In 

practice, a best design can be chosen based on some other criteria also. 

 



Design Optimization 

Page 18 of 22 

PPOOSSTT--OOPPTTIIMMIIZZAATTIIOONN  AANNAALLYYSSIISS  

We performed some post-optimization analysis on the results to verify that the solutions 

obtained are accurate. 

OPTIMALITY CONDITIONS 

To verify whether the particular solution obtained was optimal, we used Monte-Carlo 

simulations. We give the details of the simulation for one of the cases with the optimal values of 

nozzle radius, standoff distance and angle of attack being 1.98 mm, 100 mm and 45° 

respectively. The number of steps was fixed at 20 for this simulation. The optimal value for the 

cleaning effectiveness for this design was 0.2599. 
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Figure 13: Plot of different trials of the Monte-Carlo simulation 

Figure 13 shows the result of the value of different cleaning effectiveness values for 50 

random designs. It was verified that the design obtained from GA is the best design in the 

neighborhood as the values as the cleaning effectiveness for all the other designs were less than 

that of the optimal design.  

 

This analysis only proves that the design obtained is a local maximum. There can be still 

some other design that could be a global maximum. However, since the GA was initially seeded 

with random values, the probability of such a case existing is very less. Moreover, several 

different GA runs also converged to the same design. Hence, we can safely assume this is a 

global maximum. 
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SENSITIVITY ANALYSIS 

The parameters for the cleanability optimization problem include the properties of water, 

surface size, surface material and water pressure at the nozzle. We analyzed the sensitivity of 

three design variables (standoff distance, attack angle and nozzle radius) with respect to the 

water pressure. The default water pressure used was 200 MPa. We solved a series of 

optimization problems under different given water pressures that ranged from 90% to 110% of 

the default value, and tracked the change in design variables with respect to the water pressure. 

 

The analysis results show that when water pressure changes, the best standoff distance 

and attack angle remains unchanged (the maximum feasible value), and the nozzle radius 

decreases linearly. The sensitivity of the optimum design variables to the water pressure are 

given below. 
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Figure 14: Variation of optimal nozzle radius with pressure 
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Figure 15: Variation of cleaning effectiveness with nozzle radius for different pressures 

 

Figure 14 shows the variation of the optimal nozzle radius with respect to water pressure. 

As you can see the optimal nozzle radius decreases with increase in water pressure. The cleaning 

effect under different water pressure and different nozzle radii is shown in Figure 15. The 

optimal cleaning effect does not change with change with water pressure. However, the cleaning 

effect for a particular nozzle radius either increases or decreases depending on weather the 

particular nozzle radius is bigger or smaller than 2.15 mm respectively. 
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Figure 16: Optimum angle of attack for different pressures 
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Figure 16 and Figure 17 show that the water pressure does not affect the optimal standoff 

distance or the angle of attack. This is because these values are at edges of constraints and hence 

their optimum values do not change with the water pressure. 
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Figure 17: Optimum standoff distance for different pressures 

 

CCOONNCCLLUUSSIIOONNSS  

A simplified cleaning process was optimized in a reduced design space using Genetic 

Algorithms. Analysis of the results indicate that the obtained solution is a really an optimum. 

The sensitivity of the optimum design with respect to one of the input parameters was obtained. 

Similarly, the sensitivity of the optimal design with respect to other parameters can also be 

obtained.  

 

The simulation used for evaluating the fitness functions is computationally intensive. 

Moreover, the solutions obtained using GA were not exactly accurate due to numerical errors in 

the simulation. We can perform an error analysis on the simulation and can give bounds to the 

errors. Then the step size for different parameters in the GA algorithm can be correctly chosen. 

Currently we use the default step size for the design variables, which is not the best method, as it 

is not required to vary the design variables in a finer step than the error in the simulation. 
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Finally, the GA algorithm has to be fine-tuned to obtain accurate convergence. The 

parameters of the GA itself have to be chosen properly to make sure that the GA converges to the 

correct design fast. This is especially important in problem similar to the one in this project 

where the computation cost in evaluating the objective function is very high. Moreover, the 

running time also depends on the implementation of GA. The algorithm should be intelligent 

enough to reuse old data and should not re-compute the data.  
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