

CCLLEEAANNIINNGG PPRROOCCEESSSS OOPPTTIIMMIIZZAATTIIOONN

Adarsh Krishnamurthy

Wei Li

Design Optimization

Page 2 of 22

IINNDDEEXX

Introduction... 3

Simplified Process Description.. 4

Simulation Model.. 5

Cleaning Effectiveness .. 7

Problem Formulation .. 8

Design Variables and Parameters .. 8

Constraints ... 9

Optimization ... 9

Multi-objective Formulation.. 9

Single-objective Formulation .. 9

Optimization Method... 10

Implementation .. 11

Genetic Algorithm Implementation... 13

Results.. 16

Post-Optimization Analysis .. 18

Optimality Conditions ... 18

Sensitivity Analysis ... 19

Conclusions... 21

References... 22

Design Optimization

Page 3 of 22

IINNTTRROODDUUCCTTIIOONN

Components that are manufactured by sand casting have to be cleaned after they are cast

to remove sand particles that are embedded on the surface of the components. This cleaning

process is essential for critical parts like engine blocks, which should not have any foreign debris

in them. There are usually different methods used for cleaning cast components depending on

their size. Smaller components are usually tumble cleaned by rotating the components in a

tumbler. The mechanical vibrations and collisions remove the embedded sand particles. On the

other hand, big components like engine blocks cannot be cleaned by this method. They are

usually cleaned by blasting them with high-pressure water jet. The water removes all the

embedded sand particles and does not harm the surface, as the pressure involved is low for actual

part erosion. Figure 1 shows a cast component before and after cleaning. It is essential that the

sand particles be removed from the surface of such component to prevent the premature failure

of the component.

Figure 1: Cast component before and after cleaning

The radius of the water jet nozzle used for the cleaning process is much smaller than the

size of the part to be cleaned. Hence, these nozzles are rotated while being simultaneously

moved along the surface of the part. Rotating the nozzles increases the area covered by the

nozzles or the water accessible regions. This makes the actual cleaning process using water jet

complex. Figure 2 shows the schematic of cleaning of a complex part using rotating water jet.

The waterjet is rotated as well as moved simultaneously above a complex part and parts cleaned

are shown as dots on the surface of the part.

Design Optimization

Page 4 of 22

Figure 2: Schematic of the actual cleaning process

SIMPLIFIED PROCESS DESCRIPTION

Since the actual process is too complex to model, we simplified the process so that it can

be optimized in a smaller design space. It involves moving single non-rotating waterjet nozzle

over the surface of the part to be cleaned. Various parameters like the water pressure, standoff

distance, angle of attack etc. affect the final cleaning effectiveness. We also considered only a

flat square plate of a fixed dimension for cleaning.

Flat Geometry

Single Non-Rotating
Water Jet Straight Path

Figure 3: Simplified cleaning process

The simplified cleaning process is shown in Figure 3. It shows a single nozzle which is

positioned at a particular standoff distance from a flat surface. The water jet is moved in a

straight path in discrete steps to simulate the motion of the nozzle. In addition, the angle of attack

as well as the radius of the nozzle can be changed to optimize the process.

Design Optimization

Page 5 of 22

SSIIMMUULLAATTIIOONN MMOODDEELL

The water from the water jet is approximated by a set of rays as shown in Figure 4. The

rays originate from the nozzle and have a pressure distribution that decays along the radial

direction away from the center of the nozzle. The impact pressure is calculated at the points on

the plate at which the rays hit the surface. Then based on the impact pressure, a quantity called

the cleaning effectiveness is calculated.

Pressure Distribution

Cleaning Width

Figure 4: Waterjet approximated as a set of rays

A model for calculating the pressure distribution of a stationary waterjet [1] is established

using equation(1). The nomenclature for the equation is listed in Table 1. This equation gives the

impact pressure of the waterjet at any point on the surface of the plate.

x

r

α

(yp, zp)

Figure 5: Waterjet model

Design Optimization

Page 6 of 22

32 1.5

0
07.95 1r rP k P

Cx Cx
λ ψ ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎢ ⎥⎣ ⎦

 (1)

Table 1: Nomenclature

P Impact pressure

λ Stress coefficient

k Flow resistance coefficient of water system

ψ Sound speed in water

0P Water pressure from the nozzle

ρ Density of water

0r Radius of nozzle

r Distance of the point of consideration from the waterjet centerline

C Jet spreading coefficient

x Standoff distance

An example of the pressure distribution is shown in the figure below. In this case, the

nozzle has an attack angle of 45°.

Figure 6: Pressure distribution on a flat surface due to a waterjet at 45° angle

Design Optimization

Page 7 of 22

CLEANING EFFECTIVENESS

The ability of the water jet for cleaning the surface is correlated directly to the impact

pressure of the waterjet on the surface. Higher impact pressures correlate to higher cleaning

effectiveness. We use a cumulative normal distribution to correlate the pressure of the water jet

with cleaning effectiveness as shown in Figure 7.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pressure (MPa)

C
le

an
in

g
E

ffe
ct

iv
en

es
s

Figure 7: Correlation between impact pressure and cleaning effectiveness

The simulation program calculates impact pressure on the surface due to all the positions

of the nozzle on a set of discrete but sufficiently dense points on the flat surface. Based on this

impact pressure, the cleaning effectiveness is calculated. Figure 8 shows the simulation of the

waterjet on a flat plate. The colors on the plate indicate the cleaning effectiveness at a particular

point.

Figure 8: Simulation of a moving nozzle over a flat surface

Design Optimization

Page 8 of 22

PPRROOBBLLEEMM FFOORRMMUULLAATTIIOONN

We have a two-objective optimization problem. The first objective is to maximize the

sum of the average cleaning effectiveness, averaged over the set of sample points S on the

surface for all nozzle positions, N and the coverage fraction, which is the fraction of the total

area accessible by water. This is given in equation (2) and is obtained as an output of the

simulations, where C is the coverage fraction and e is the effectiveness calculated at each sample

point of S.

 1
N S N

CE e dA c dA e
S S

= + ≈ +∑ ∑∑∫ ∫ (2)

The second objective function is to minimize the number of positions of the waterjet,

which directly corresponds to the feed rate of movement of the nozzle. If there are more

positions, then the cleaning effectiveness will be high but on the other hand, the time for the

process will also be high.

 tt k n= ⋅ (3)

where kt is the constant time taken for each position and n is the number of positions. We

assume that the distance moved in each step is constant and is inversely proportional to the

number of steps. For the purpose of the simulations, we also assume kt to be unity.

DESIGN VARIABLES AND PARAMETERS

We are optimizing the cleaning process for the standoff distance (x), angle of attack (α),

nozzle-radius (r0) and the number of steps (n). The number of steps is considered as a discrete

variable as it can take only integer values. On the other hand, even though the available nozzle

sizes are discrete, we can approximate it as a continuous variable to simplify the optimization. It

can then be rounded off to the nearest available nozzle size after the optimization is completed.

The simulation model also takes in some fixed parameters. These parameters include the

waterjet pressure P0, jet-spreading coefficient C and flow resistance factor k. The model also

needs some constants like density of water and speed of sound for the simulations.

Design Optimization

Page 9 of 22

CONSTRAINTS

One of the main constraints for the simulation is that the impact pressure should not be

very high that it damages the surface of the part being cleaned. There are some physical

constraints on the maximum and minimum standoff distances. In addition, the total time or the

number of steps cannot exceed a particular threshold. Similarly, there are some constraints on the

angle of attack in the sense that it cannot be too obtuse.

OOPPTTIIMMIIZZAATTIIOONN

MULTI-OBJECTIVE FORMULATION

The complete formulation for the multi-objective formulation is given below. Most of the

constraints except the pressure constraint are direct constraints on the design variables.

Maximize E (Cleaning effect given in equation (2))

Minimize t (Cleaning time given by equation (3))

subject to constraints

P ≤ Pmax Maximum pressure

n ∈ {1,50} Number of positions of the nozzle

x ≤ 0.1 Maximum standoff distance

-x ≥ 0.05 Minimum standoff distance

R0 ≤ 0.008 Maximum nozzle radius

-R0 ≤ 0.0001 Minimum nozzle radius

α ≤ 45 Maximum attack angle

-α ≤ 0 Minimum attack angle

SINGLE-OBJECTIVE FORMULATION

Since we wanted to generate the Pareto frontier for the multi-objective formulation, we

decided to implement it as a single-objective formulation using the ε-constraint method. We used

the second objective as a constraint and optimized the first objective. The complete formulation

Design Optimization

Page 10 of 22

is given below. The second constraint directly gives the value for the number of steps for the

simulations and it is taken as a constant during single objective optimization.

Maximize E (Cleaning effect given in equation (2))

subject to constraints

P ≤ Pmax Maximum pressure

t = ε Total time for cleaning.

x ≤ 0.1 Maximum standoff distance

-x ≥ 0.05 Minimum standoff distance

R0 ≤ 0.008 Maximum nozzle radius

-R0 ≤ 0.0001 Minimum nozzle radius

α ≤ 45 Maximum attack angle

-α ≤ 0 Minimum attack angle

OPTIMIZATION METHOD

From Equation (1) and (2), we can see that the objective function for the optimization

problem is a complex and nonlinear one. Since the form of the objective function does not have

an explicit expression, a black-box optimization technique is required to solve it. We decided to

use Genetic Algorithm (GA) because of the following reasons.

1. GA does not require gradient information. Because of the complexity of our objective

function, it is difficult to get its gradient information.

2. GA can handle both continuous and discrete variables simultaneously. In our problem,

the step number is a discrete variable, but attack angle, nozzle radius and standoff

distance are continuous variables.

3. Most of the constraints in our problem are very simple – they are just boundary limits.

This overcomes the difficulty of handling constraints in GA.

4. There are many free GA libraries available.

Design Optimization

Page 11 of 22

IMPLEMENTATION

We used a C++ genetic algorithm library – GAlib [3] for the implementation. The library

includes tools for using GA to do optimization in any C++ program using user-defined genetic

operators. We chose GAlib because it is written by C++, which is object oriented and hence can

be seamlessly integrated with our simulation program. A simple optimization program using

GAlib can be as short as three lines of codes and a user-defined objective function as shown in

Figure 9. Furthermore, GAlib can handle simple constraints such as boundary limits, and

supports continuous and discrete design variables, which make it ideal for our optimization

problem.

Figure 9: Simple GA optimization program using GAlib

The general workflow of GAlib to solve an optimization problem is shown in Figure 10.

Some of the important classes in GAlib are explained below.

• GAGeneticAlgorithm represents a genetic algorithm. Four different flavors of genetic

algorithms based on how new population is created are supported: the standard simple

genetic algorithm, steady-state genetic algorithm, incremental genetic algorithm and

deme genetic algorithm.

• GAPopulation represents a population, which is a container for the genomes. Each

population contains a scaling object that is used to determine the fitness of its genomes.

• GAGenome represents a genome (chromosome). Three different data types of genomes

are supported: binary, string, and float. In addition, three different configurations of

genomes are supported: array, tree and list. Use can customize the crossover and mutator

for genomes.

Design Optimization

Page 12 of 22

• GAAlleleSet represents a container for the different values that a gene may assume. An

allele set may be enumerated, unbounded, bounded or bounded with discretization. By

using GAAlleleSets, we can define simple constraints in optimization problems.

Initialize population

Select individuals for mating

Mate individuals to produce
offsprings

Mutate offsprings

Insert offsprings into
population

Are stopping
criteria satisfied ?

Finish

Y

N

Figure 10: General workflow of GAlib

GAGeneticAlgorithmGAParameterList GAStatistics

GAScalingScheme

GASelectionScheme

GAPopulation

GAGenome GAAlleleSet

ObjectiveCrossover Mutation

Figure 11: Relationships between major classes in GAlib

Design Optimization

Page 13 of 22

The relationships between the major classes of GAlib are shown in Figure 3. They can be

categorized into three groups: input (GAParameterList, GAScalingScheme, GASelectionScheme,

Crossover function, Mutation function, and Objective function), core (GAGeneticAlgorithm,

GAPopulation, GAGenome, and GAAlleleSet), and output (GAStatistics).

GENETIC ALGORITHM IMPLEMENTATION

In the following section, we discuss some implementation details of using GAlib for the

cleanability optimization. We use the “simple genetic algorithm,” which is implemented in

GASimpleGA class in the library. This algorithm uses non-overlapping populations and optional

elitism. Each generation the algorithm creates an entirely new population of individuals. The

parameters defined for the algorithm are listed in Table 2. We used the following parameters

after experimenting with them. The parameters that were chosen finally usually guaranteed

convergence.

Table 2: GA parameters

Parameter Name Value

Population Size 100

Number of Generations 200

Mutation Probability 0.001

Crossover Probability 0.9

Generations to Convergence 20

Convergence Percentage 0.99

In this table, Number of Generations gives the maximum number of generations until

which the GA is evolved. Evolution will stop if the number of generations exceeds this setting.

Generations to Convergence and Convergence Percentage are used when convergence is used as

the stop criteria. The convergence percentage is defined as the ratio of the Nth previous best-of-

generation score to the current best-of-generation score. N is defined by the Generations to

Convergence parameter.

Design Optimization

Page 14 of 22

Objective function

Since the simple genetic algorithm cannot enforce complex constraints, the constraints

were incorporated in the fitness function itself. We tried different fitness functions and finally

used the function given in equation (4) for the optimization.

 max(,0)f e c m= + − (4)

where e is the cleaning effectiveness as calculated from equation (2)

 c is the coverage effect or the fraction of the area accessible to the water jet

 m is the pressure effect which is 1 if P > Pmax and 0 if P ≤ Pmax

The max function is used to keep the objective functions always positive. This was one of

the requirements of GAlib as it is not capable of handling negative objective functions.

Genome

We use genomes of the type of 1D-float arrays, which is implemented in the

GARealGenome class. The size of the array is 4, and each element in the array represents the

attack angle, standoff distance, nozzle radius and step number respectively. Since currently we

do not have any knowledge about the property of the cleaning process, the population is

initialized with randomized designs in the feasible region.

Genome Operators

For all the three-genome operators – selection, crossover and mutation, we use the

predefined default behaviors of GARealGenome. For the selection, the default scheme is

RouletteWheel, which is implemented in GARouletteWheelSelector class. It looks through the

members of the population using a weighted roulette wheel. Likelihood of selection is

proportional to the fitness score.

For the crossover, the default scheme is Uniform Crossover, which is implemented in

GARealUniformCrossover class. Uniform crossover is radically different to 1-point crossover. It

randomly takes bits from parents. For each bit, we flip a coin to see if that bit should come from

the mother or the father. For the mutation, the default scheme is Gaussian Mutation, which is

Design Optimization

Page 15 of 22

implemented in GARealGaussianMutator class. The Gaussian mutator picks a new value based

on a Gaussian distribution around the current value and respects the bounds.

Constraints

By means of allele set, we can set up boundary constrains for the design variables. Allele

set is implemented in GAAlleleSet. It acts as a container for the different design values that a

gene can assume. It may be bounded, unbounded, or discrete. The allele sets we used for the four

design variables are listed in Table 3.

Table 3: Allele constraint sets for the design variables

Design Variable Allele Set

Attack Angle GAAlleleSet(0, 45)

Standoff Distance GAAlleleSet(0.05, 0.1)

Nozzle Radius GAAlleleSet(0.0001, 0.008)

Step Number GAAlleleSet(1, 50, 1)

Fitness Scaling

Given a particular chromosome, the fitness function returns a single numerical “fitness,”

which is supposed to be proportional to the ability of the individual for mating. It is a possibly

transformed rating based on the raw objective score. In our program, we use the default linear

scaling scheme, which is implemented in GALinearScaling. Objective scores are converted to

fitness scores using the relation

 f a obj b= +i (5)

where a and b are calculated based upon the objective scores of the individuals in the

population.

Stop Criteria

GAlib supports three different stop criteria: TerminateUponGeneration,

TerminateUponConvergence and TerminateUponPopConvergence. TerminateUponGeneration

compares the current generation to the specified number of generations.

TerminateUponConvergence compares the current convergence to the specified convergence

value. TerminateUponPopConvergence compares the population average to the score of the best

Design Optimization

Page 16 of 22

individual in the population. In our program, we used the first two criteria, and both give the

same optimum solution.

RESULTS

Using the ε-constraint method, we calculated the Pareto front for the optimization

problem. Figure 12 shows the results of the optimization along with the Pareto front. The scale

on y-axis is inverted to better interpret the results. One of the main notable features is that the

exact values obtained from the optimization are not smooth and do not form a smooth curve.

This can be attributed to numerical errors in the simulation program where the data is either

truncated or approximated.

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3
0 5 10 15 20 25 30 35 40 45 50

Number of Steps

C
le

an
in

g
Ef

fe
ct

iv
en

es
s

Optimal Designs
Pareto Front
Ideal Point
Optimal Front

Figure 12: Results of the optimization showing the Pareto front (Note inverted scale on y-axis)

 Each point on the above graph was averaged over three different GA runs. Since the

simulation was slow, an average of only three runs was taken. The simulation took about an hour

Design Optimization

Page 17 of 22

for each point in the graph and took approximately 50 hours to construct the complete Pareto

front.

Table 4: Pareto optimal design points

Steps Fitness Angle Standoff Radius L2 Norm L1 Norm Linf Norm
2 0.1665 45 100 1.75 0.3173 0.3173 0.3173
3 0.1757 45 100 1.88 0.2874 0.3067 0.2867
4 0.1846 45 100 1.81 0.2601 0.2970 0.2570
5 0.1947 45 100 2.08 0.2313 0.2833 0.2233
6 0.2043 45 100 2.06 0.2074 0.2713 0.1913
7 0.2136 45 100 2.07 0.1890 0.2603 0.1603
8 0.2208 45 100 1.79 0.1816 0.2563 0.1363
9 0.2272 45 100 1.64 0.1812 0.2550 0.1400

10 0.2336 45 100 1.55 0.1854 0.2537 0.1600
11 0.2389 45 100 1.61 0.1954 0.2560 0.1800
12 0.2451 45 100 2.15 0.2075 0.2553 0.2000
13 0.2495 45 100 1.92 0.2237 0.2607 0.2200
14 0.2517 45 100 1.90 0.2423 0.2733 0.2400
15 0.2542 45 100 1.84 0.2612 0.2850 0.2600
16 0.2561 45 100 1.96 0.2806 0.2987 0.2800
17 0.2587 45 100 2.05 0.3002 0.3100 0.3000
18 0.2607 45 100 2.14 0.3200 0.3233 0.3200
19 0.2598 45 100 2.01 0.3401 0.3463 0.3400
20 0.2599 45 100 1.98 0.3600 0.3660 0.3600
21 0.2617 45 100 2.15 0.3800 0.3800 0.3800

Table 4 lists all the Pareto optimal design points. There are different methods to choose a

particular design from the above table. We can use the ideal point as a reference and use it to

choose the final design based on L2, L1 or the Linf Norm.

The ideal point for the optimization is (2, 0.2617). Based on L2 Norm, the best design

obtained is shown in yellow in the above table with number of steps as 9. On the other hand, the

best design based on L1 Norm has 10 steps and the best design based on Linf Norm has 8 steps.

The difference in the best optimal design based on these three Norms is not very much. In

practice, a best design can be chosen based on some other criteria also.

Design Optimization

Page 18 of 22

PPOOSSTT--OOPPTTIIMMIIZZAATTIIOONN AANNAALLYYSSIISS

We performed some post-optimization analysis on the results to verify that the solutions

obtained are accurate.

OPTIMALITY CONDITIONS

To verify whether the particular solution obtained was optimal, we used Monte-Carlo

simulations. We give the details of the simulation for one of the cases with the optimal values of

nozzle radius, standoff distance and angle of attack being 1.98 mm, 100 mm and 45°

respectively. The number of steps was fixed at 20 for this simulation. The optimal value for the

cleaning effectiveness for this design was 0.2599.

0.2555

0.2560

0.2565

0.2570

0.2575

0.2580

0.2585

0.2590

0.2595

0.2600

0.2605

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Trials

C
le

an
in

g
E

ffe
ct

iv
en

es
s

Trial points
Optimal value

Figure 13: Plot of different trials of the Monte-Carlo simulation

Figure 13 shows the result of the value of different cleaning effectiveness values for 50

random designs. It was verified that the design obtained from GA is the best design in the

neighborhood as the values as the cleaning effectiveness for all the other designs were less than

that of the optimal design.

This analysis only proves that the design obtained is a local maximum. There can be still

some other design that could be a global maximum. However, since the GA was initially seeded

with random values, the probability of such a case existing is very less. Moreover, several

different GA runs also converged to the same design. Hence, we can safely assume this is a

global maximum.

Design Optimization

Page 19 of 22

SENSITIVITY ANALYSIS

The parameters for the cleanability optimization problem include the properties of water,

surface size, surface material and water pressure at the nozzle. We analyzed the sensitivity of

three design variables (standoff distance, attack angle and nozzle radius) with respect to the

water pressure. The default water pressure used was 200 MPa. We solved a series of

optimization problems under different given water pressures that ranged from 90% to 110% of

the default value, and tracked the change in design variables with respect to the water pressure.

The analysis results show that when water pressure changes, the best standoff distance

and attack angle remains unchanged (the maximum feasible value), and the nozzle radius

decreases linearly. The sensitivity of the optimum design variables to the water pressure are

given below.

0

0

0

0

0

0

0.003mm/MPa

P
x
P
r
P

α∂
=

∂

∂
=

∂
∂

= −
∂

 (6)

2.10

2.12

2.14

2.16

2.18

2.20

2.22

2.24

1.80E+08 1.85E+08 1.90E+08 1.95E+08 2.00E+08 2.05E+08 2.10E+08 2.15E+08 2.20E+08

Pressure (Pa)

R
ad

iu
s

(m
m

)

Figure 14: Variation of optimal nozzle radius with pressure

Design Optimization

Page 20 of 22

0.254

0.255

0.256

0.257

0.258

0.259

0.26

0.261

0.262

2 2.05 2.1 2.15 2.2 2.25

Nozzle Radius (mm)

C
le

an
in

g
Ef

fe
ct

iv
en

es
s

2.20E+08
2.18E+08
2.16E+08
2.14E+08
2.14E+08
2.10E+08
2.08E+08
2.06E+08
2.04E+08
2.02E+08
2.00E+08
1.98E+08
1.96E+08
1.94E+08
1.92E+08
1.90E+08
1.88E+08
1.86E+08
1.84E+08
1.82E+08

Figure 15: Variation of cleaning effectiveness with nozzle radius for different pressures

Figure 14 shows the variation of the optimal nozzle radius with respect to water pressure.

As you can see the optimal nozzle radius decreases with increase in water pressure. The cleaning

effect under different water pressure and different nozzle radii is shown in Figure 15. The

optimal cleaning effect does not change with change with water pressure. However, the cleaning

effect for a particular nozzle radius either increases or decreases depending on weather the

particular nozzle radius is bigger or smaller than 2.15 mm respectively.

40.00

42.00

44.00

46.00

48.00

50.00

1.80E+08 1.85E+08 1.90E+08 1.95E+08 2.00E+08 2.05E+08 2.10E+08 2.15E+08 2.20E+08

Pressure (Pa)

A
ng

le
 o

f A
tta

ck
 (d

eg
)

Figure 16: Optimum angle of attack for different pressures

Design Optimization

Page 21 of 22

Figure 16 and Figure 17 show that the water pressure does not affect the optimal standoff

distance or the angle of attack. This is because these values are at edges of constraints and hence

their optimum values do not change with the water pressure.

95.00

97.00

99.00

101.00

103.00

105.00

1.80E+08 1.85E+08 1.90E+08 1.95E+08 2.00E+08 2.05E+08 2.10E+08 2.15E+08 2.20E+08

Pressure (Pa)

St
an

do
ff

D
is

ta
nc

e
(m

m
)

Figure 17: Optimum standoff distance for different pressures

CCOONNCCLLUUSSIIOONNSS

A simplified cleaning process was optimized in a reduced design space using Genetic

Algorithms. Analysis of the results indicate that the obtained solution is a really an optimum.

The sensitivity of the optimum design with respect to one of the input parameters was obtained.

Similarly, the sensitivity of the optimal design with respect to other parameters can also be

obtained.

The simulation used for evaluating the fitness functions is computationally intensive.

Moreover, the solutions obtained using GA were not exactly accurate due to numerical errors in

the simulation. We can perform an error analysis on the simulation and can give bounds to the

errors. Then the step size for different parameters in the GA algorithm can be correctly chosen.

Currently we use the default step size for the design variables, which is not the best method, as it

is not required to vary the design variables in a finer step than the error in the simulation.

Design Optimization

Page 22 of 22

Finally, the GA algorithm has to be fine-tuned to obtain accurate convergence. The

parameters of the GA itself have to be chosen properly to make sure that the GA converges to the

correct design fast. This is especially important in problem similar to the one in this project

where the computation cost in evaluating the objective function is very high. Moreover, the

running time also depends on the implementation of GA. The algorithm should be intelligent

enough to reuse old data and should not re-compute the data.

RREEFFEERREENNCCEESS

1. M.C. Leu. P. Meng, E.S. Geskin, L. Tismeneskiy, “Mathematical Modeling and

Experimental Verification of Stationary Waterjet Cleaning Process,” Journal of

Manufacturing Science and Engineering, 1998, Vol 120, pp. 571-579.

2. George S. Springer, “Erosion by Liquid Impact,” 1976, John Wiley

3. http://lancet.mit.edu/ga/

