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This paper presents a new unified and optimized method for evaluating and displaying trimmed NURBS
surfaces using the Graphics Processing Unit (GPU). Trimmed NURBS surfaces, the de facto standard in
commercial mechanical CAD modeling packages, are currently being tessellated into triangles before
being sent to the graphics card for display since there is no native hardware support for NURBS. Other
GPU-based NURBS evaluation and display methods either approximated the NURBS patches with lower
degree patches or relied on specific hard-coded programs for evaluating NURBS surfaces of different
degrees. Our method uses a unified GPU fragment program to evaluate the surface point coordinates of
any arbitrary degree NURBS patch directly, from the control points and knot vectors stored as textures
in graphics memory. This evaluated surface is trimmed during display using a dynamically generated
trim-texture calculated via alpha blending. The display also incorporates dynamic Level of Detail (LOD)
for real-time interaction at different resolutions of the NURBS surfaces. Different data representations
and access patterns are compared for efficiency and the optimized evaluation method is chosen. Our GPU

evaluation and rendering speeds are more than 40 times faster than evaluation using the CPU.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Non-Uniform Rational B-Splines (NURBS) are the industry stan-
dard for the representation of geometry in mechanical Computer
Aided Design (CAD) systems. Although NURBS are ubiquitous in
the CAD industry, there is currently no built-in hardware support
for displaying NURBS surfaces. OpenGL provides a software NURBS
solution; however, the implementation is not fast enough for eval-
uating large surfaces interactively, and in our experience it of-
ten renders trimmed NURBS surfaces incorrectly. Because surface
evaluation is a computationally intensive operation, the common
practice in CAD systems is to preprocess the NURBS surfaces by
evaluating and tessellating them into triangles, and then using the
standard graphics pipeline to display them.

The use of a preprocessing technique not only leads to very
high memory usage, but also restricts the surface evaluation to
a particular Level of Detail (LOD). Hence, a highly enlarged view
of the surface may not be tessellated sufficiently, whereas a
distant view may render an excessive number of triangles. In this
paper, we describe a method by which we evaluate and display
a trimmed NURBS surface directly, without approximating it by
simpler surfaces, using a programmable graphics card. The usage
of the GPU’s computational power not only speeds up the surface
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evaluation significantly but also reduces the CPU memory usage,
eliminating the need for calculating and storing the tessellation
data or simplified surface information that is typically used only
for visualization purposes.

Previous GPU methods [1,2] focused mainly on rendering
NURBS surfaces rather than exact evaluation. Hence, they approx-
imated a higher degree NURBS surface by lower degree Bezier
surfaces that closely resemble the original surface based on pixel
location error while rendering. Even though such approxima-
tions are good enough for rendering, they cannot be extended
to a general-purpose NURBS evaluator capable of handling arbi-
trary degree NURBS surfaces. We introduced a unified method
to evaluate arbitrary degree NURBS surfaces on the GPU with-
out making any approximations [3]. The contemporaneous work
by Kanai [4] for evaluating NURBS surfaces also did not use any
approximations, but required different GPU programs for evalu-
ating NURBS surfaces of different degrees. This makes the imple-
mentation of their system tedious, since specific new programs
have to be written for surfaces of different degrees. Moreover, since
standard CAD models can be made of surfaces of widely varying
degrees, with surfaces up to degree 100 occurring in many com-
plex models, a unified NURBS evaluation algorithm will be a more
practical solution.

In this paper we describe our unified NURBS evaluation
and rendering method, expanded from the original conference
presentation [3]. The main contributions of our approach include:

e A GPU method for evaluating arbitrary degree NURBS surfaces
with an arbitrary number of control points and knots with
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the same unified fragment program. Our method uses the
GPU to evaluate a grid of points on the NURBS surface that
can be directly used for rendering as well as for further
modeling operations. Our method is easily extensible to
evaluate derivatives and normals of the NURBS surface.

e Backward-compatible algorithms that make use of standard
OpenGL extensions or features that are available even in cards
that are more than 5 years old, while still taking advantage of
the improved performance on newer cards.

o Different implementations of the evaluation algorithm that use
different memory access patterns and data packing on the
GPU. We choose the optimum evaluation method based on the
performance of these different implementations.

e A direct method to render trimmed NURBS surfaces by inter-
preting the points already evaluated as vertices. The rendering
algorithm is capable of dynamic continuous LOD based on the
size and location of the surface with respect to the view point.

2. Background and related work

2.1. Programmable GPUs

Graphics processing units (GPUs) have recently evolved into
programmable parallel processors capable of performing general-
purpose computational tasks [5,6]. We make use of two pro-
grammable units on the GPU, the Vertex Processing Unit (VPU)
and the Fragment Processing Unit (FPU), which can execute a user-
defined set of instructions, called the vertex program and the frag-
ment program, for each vertex and fragment respectively, in the
place of a fixed sequence of geometric transformations, lighting
operations (per-vertex operations), and texturing operations (per-
fragment operations). Vertex programs can obtain the geometry
and attribute (color, texture coordinates, etc.) data stored in the
GPU memory via traditional display lists or more recently, Ver-
tex Buffer Objects (VBOs). Geometric primitives (triangles gen-
erally) assembled from the vertex data then get rasterized into
fragments (potential pixels) that pass through the FPU. Vertex and
fragment programs can access data stored in textures that can have
full 32-bit floating point precision. Usually the output of the FPU
goes into a frame buffer, which is a 2D block of memory with four
attributes at each location. In modern GPUs, the FPU can also out-
put directly to a floating point texture (render-to-texture) using
off-screen render targets called Frame Buffer Objects (FBOs). This
allows the use of the output of a first pass through the rendering
pipeline as input texture data for the second pass. FBOs can also be
used to render into a Vertex Buffer Object (VBO) so that the out-
put can be used as vertex data for the next rendering pass. Because
multiple vertices and pixels are processed in parallel, and operands
are four-component vectors, GPUs can achieve much higher com-
putational speeds than conventional CPUs on arithmetically inten-
sive operations.

2.2. NURBS evaluation techniques

Many early high-quality renderings of curved surfaces used ray
tracing. Toth [7] and Nishita et al. [8] perform ray tracing on para-
metric and rational surfaces by solving for the ray-surface intersec-
tion point using numerical methods. Martin et al. [9] gives a com-
plete algorithm for ray tracing trimmed NURBS. Pabst et al. [10]
used ray casting on the GPU to render trimmed NURBS surfaces.

To take advantage of graphics hardware, parametric surfaces
tend to be tessellated before display. Much work on trimmed
NURBS focuses on the trimming aspect. The OpenGL version
1.1 implementation renders trimmed NURBS surfaces using
the method presented by Rockwood et al. [11] for trimmed
parametric surfaces, which divides the parametric domain into

patches based on the trim curves. These patches are then
tessellated in the 2D domain and then evaluated to find the
surface point coordinates. However, in our experience the OpenGL
implementation tessellates trimmed NURBS surfaces incorrectly at
trim curve concavities. In addition, being a CPU evaluator, it is not
fast enough to render large numbers of trimmed NURBS surfaces
at interactive rates.

Previous work such as [12-14] displayed NURBS after first con-
verting them to Bezier patches and converting the trimming curves
to Bezier segments, since Bezier evaluation is less computation-
ally demanding. These patches were then triangulated and sent to
the graphics card for display. Guthe et al. [1,2] approximate each
NURBS surface with lower degree Bezier patches, but they then
evaluate the Bezier patches on the GPU after the CPU approxima-
tion step. They also introduced a LOD system for choosing the ap-
propriate approximation patch decomposition and the sampling
density. Since in general no Bezier surface of lower degree can
exactly match an arbitrary degree NURBS surface, a disadvantage
of this approach is that the final surface may not achieve suffi-
cientaccuracy unless itis split into many Bezier patches, increasing
the number of patches by up to two orders of magnitude in their
examples.

Subdivision surfaces, which have largely replaced tensor-
product patches in entertainment applications where mathemati-
cal exactness is not required, have also been directly evaluated on
the GPU. Prior work by Bolz and Schréder [15] and Shiue et al. [16]
focused on using a fragment program to compute the limit points
of Catmull-Clark subdivision meshes. These methods can be ex-
tended to evaluate uniform B-spline surfaces; the limit surface of
a Catmull-Clark subdivision in the absence of extraordinary points
is the bi-cubic B-spline surface. However, they cannot be extended
to evaluate NURBS because they do not have a subdivision scheme
with stationary rules [17,18]. Loop and Blinn [19] used the GPU to
render piecewise algebraic surfaces of lower degrees. However, it is
difficult to extend the method to evaluate arbitrary degree NURBS
surfaces.

The fragment-program implementations of surface evaluation
of subdivisions were not fast enough for real-time interaction with
a large number of surfaces because the evaluated surface coordi-
nates had to be read back from an off-screen pixel buffer using an
expensive p-buffer switch for each surface. Guthe et al. [1] over-
come this issue by using a vertex program, but their method is not
as flexible because the number of parameters that can be passed
to a vertex program is quite limited, and vertex texture fetches are
possible only in the latest graphic cards. Thus, they approximated
the original input by a hierarchy of bi-cubic Bezier patches to limit
the amount of data that needed to be transferred per patch. In our
approach, we use a fragment program but get around the p-buffer
switch issue by using a frame buffer object, which renders directly
to a texture, and a vertex buffer object, which takes this texture as
input coordinates for a subsequent rendering pass.

Recently, Kanai [4] developed a fragment-program based
NURBS evaluation that closely resembles our method. However,
their implementation required different fragment programs for
surfaces of different degrees. While this method is theoretically
capable of evaluating any NURBS surface, its implementation
becomes tedious since different fragment programs have to be
written specifically for each possible degree of a NURBS surface
that may be present in a model. Hence a unified evaluation method
that can be used to evaluate arbitrary degree NURBS surfaces is
preferred.

2.3. NURBS curve and surface definitions

In this section, we briefly review the mathematical notation
used for defining NURBS curves and surfaces, adapted from Piegl
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Fig. 1. NURBS models constructed from trimmed NURBS surfaces evaluated and rendered on the GPU.

A

(b) Trimmed NURBS surface.

a) Cordless drill model.

v

(c¢) Trim curves in the parametric domain.

Fig. 2. Cordless drill modeled using trimmed NURBS surfaces.

and Tiller [20]. Eq. (1) gives the definition of a NURBS curve C as
a function of the parameter u, where the P;s are the control points
and Nf s are the B-spline basis function of degree p given by Eq.
(2). Since the NURBS curve can have repeated knot values, the
special case of 0/0 that may arise in either of the terms in Eq. (2)
is taken to be 0. For concreteness, we consider a NURBS curve of
order k with n control points, which has a knot vector of length
n + k, in all the examples in this paper. Although a spline curve
may have hundreds of control points, the local support property
guarantees that in a B-spline curve of order k, the curve evaluation
point at any given parameter location is controlled only by the k
(parametrically) nearest control points. This simplifies evaluation
as well as curve editing and optimization.

n
Z NP (wyw;P;
Cw ="F—— (1)
> NP (uyw;
j=0
w@=l——m%w+“m_ NP () )
Uitp — Ui Uitp+1 — Uit

0, |1 ifuy <u<uipg
Ny () = {O otherwise. (3)

Recall that the tensor-product NURBS surface definition
(Eq. (4)) is extended directly from that of a NURBS curve. The pa-
rameter values (u, v) are the 2D evaluation points; the basis func-
tions N{’ s are the same B-spline basis functions of degree p defined
by Eq. (2); and the P;s are the NURBS control points defined as a
quadrilateral mesh. The NURBS surface is fully defined by a con-
trol point mesh and the two independent arbitrary degree u and v
parametric direction knot vectors. As in the case of curves, a NURBS
surface point is influenced only by a small sub-mesh of control

points of size k;, x k.

g;W@W@W%
S(u,v) = —— : (4)
> 2 N N (v)wy
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The boundary of a CAD model is usually represented by tensor-
product NURBS surface patches. These surfaces are rectangular
sheets; therefore they are not very flexible, especially when
it comes to representing surfaces that are not rectangular or
those with holes or complex local geometries that arise due to
Boolean operations. Therefore, many NURBS patches are trimmed,
discarding a part of the surface portion defined in the parametric
domain. An example of a trimmed NURBS surface in a CAD model
is shown in Fig. 2. The trimming information is defined in the
2D parametric domain of the surface (Fig. 2(c)). Typically, trim
curves are represented as directed closed loops; the direction of
the loop determines which side of the trim curve to cut away. There
can also be multiple loops per surface, one defining the boundary
and others defining interior holes, or even holes within holes.
Following OpenGL, we have at least one trim curve that bounds the
valid surface region for every surface in order to have a consistent
representation.

3. GPU evaluation and rendering algorithm

Our NURBS evaluation algorithm consists of two steps: the
first step is to evaluate the NURBS basis functions and the second
step is to multiply these basis function values with the control
points to get the curve or surface point coordinates. This is a
multi-pass algorithm that uses fragment programs to evaluate
the surface point coordinates without any approximations. For
rendering trimmed NURBS surfaces, we make use of our evaluation
algorithm to evaluate points on the surface and then use the
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GPU to trim the unwanted parts of the surface while rendering.
The trimming operation is directly adapted from the approach by
Guthe et al. [1]. In our implementation, the trimming curves are
evaluated and the trim-texture is generated using alpha blending
in the graphics card. Finally, while rendering the surface, the actual
trimming of the surface is performed on the GPU using another
fragment program. Thus, trimming is completely decoupled from
surface evaluation. The flow of the different operations, some of
which are performed on the CPU, are shown in Fig. 3.

To obtain optimum performance, we distribute the different
operations to be performed either on the CPU or on the GPU.
Inherently serial operations, such as calculation of the knot array,
are better suited to be performed on the CPU. Operations such
as basis function evaluation and NURBS surface point evaluation
are numerically intensive operations well suited for the better
floating point performance of the GPUs. Hence we parallelize these
operations and perform them on the GPU. However, even though
curve evaluation can be performed on the GPU, the performance
gains, if any, were small (see Section 5.3). Hence we perform curve
evaluation on the CPU itself.

4. NURBS basis function evaluation

The first step in NURBS curve or surface evaluation is the
calculation of the B-spline basis functions, which are dependent
only on the knot vector and the parameter value. We need to
transfer the information corresponding to the knot values to the
GPU in order to calculate the basis function values. For this purpose,
we generate a knot array texture on the CPU. The algorithm by
Kanai [4] on the other hand, performs this operation using binary-
search on the GPU. We perform this on the CPU since the operation
does not involve numerically intensive calculations; performing it
on the CPU will make the algorithm balanced in terms of CPU/GPU
workload.

The knot array texture has the value of the parameter u in the
first column; it has dimensions of width 2k + 1 and height equal
to the number of evaluation points. The remaining columns have
the 2k knot values for the evaluation of the corresponding non-
zero basis function values for a particular evaluation point. An
example of such a knot array is shown in Fig. 4, where the values
are visualized as a color plot for clarity. This is a sample knot array
for evaluating a cubic NURBS curve at 100 evaluation points with
equally spaced parameter values from 0 to 1. The knot vector for
this example is

[00O 0.0 0.0 0.0 0.1 0.1 05 1.0 1.0 1.0 1.0].

u Knot values

Different
parameter
values u

Fig. 4. Knot array; knot values to be transferred to the GPU as a texture visualized
as a color plot. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Calculation of the basis function is done by constructing the
higher-order basis functions from the lower-order basis functions
on the GPU. The first-order (zero-degree) basis function, being the
step function, is common for all evaluation points. It is a vector of
size k + 1 and is of the form shown in Eq. (5).

00 ..010]/. (5)

This vector is generated on the CPU; Fig. 5(a) shows the
generated first-order basis functions for the cubic NURBS curve
(order 4) for 100 evaluation points. The generated first-order basis
function is then transferred to the graphics card and stored there
as a texture, call it tex1.

The second-order basis function is computed from tex1 and the
knot array using a fragment program and is directly rendered to
another texture, call it tex2, using the frame buffer object. The
third-order basis function is then similarly computed using tex2
as input and rendering back to tex1. Thus by alternatively using
tex1 and tex2, the higher-order basis functions are calculated; a
fourth-order basis function is calculated at the end of the third
pass. In general, a kth-order basis function is computed in k — 1
passes. Fig. 5 shows the output during intermediate passes
while computing a fourth-order basis function. This “ping-pong”
technique of computing back and forth between two textures is
commonly used in GPU programming to deal with cases where
the output from an intermediate computation is required at a later
stage. The last column is always 0 during the evaluation; however
we still store the values in the texture to prevent introducing a
branch in the code for evaluation. The additional 0 column unifies
the code for evaluation since the access pattern is the same for
evaluating all higher-order basis functions.

5. Curve evaluation

Following Piegl and Tiller [20], we can break computing the
coordinates of a point on a NURBS curve given a parameter value u
into these three steps:

1. Find the knot span [u;, uj;1) in which u lies, i.e. u € [u;, ujy1).
2. Compute the corresponding non-zero basis function values
p p
Ni_p(u), o NP ().
3. Multiply the non-zero basis function values with the corre-
sponding control points and sum the results.
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Fig. 5. Intermediate values visualized as a color plot while computing a cubic basis function on the GPU. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)
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Fig. 6. Sequence of steps for curve point evaluation.

The first step, finding the knot span in which u lies, is computed on
the CPU; this operation is essentially performed while generating
the knot array on the CPU. The basis function values corresponding
to each control point are then evaluated using a fragment
program on the GPU. Finally, the actual curve points are evaluated
by multiplying out the values of the basis functions and the
corresponding control points, and then adding them together
using another fragment program. For clarity, we first describe our
procedure for calculating a NURBS curve point without any packing
of data or optimization in the following section. Details of our data
packing and optimizations are presented separately in Section 5.2.

5.1. Basic algorithm
We first compute the basis function values using the GPU

evaluation method described in Section 4. Once the basis function
values are calculated, the next step is to multiply these values

with their corresponding control points. For this, another array
with the corresponding control points for each parameter value to
be evaluated is created on the CPU. This control point array is an
array of width k, with the x, y, z and w values stored in the RGBA
channels. This array is multiplied with the basis function array
calculated in the previous step. A fragment program multiplies all
the four channels of the control point array simultaneously with
the basis function values. The resulting array is then “reduced”
along the width direction to its per-row sum to obtain the actual
curve positions using a different fragment program. The sequence
of steps for calculating the final point coordinates is shown
graphically in Fig. 6.

5.2. Optimization and packing of data

The previous section described our method for curve evaluation
without any packing of data or optimization. We now describe two
techniques that reduce the evaluation time.

GPU calculations are performed simultaneously on all four
channels (RGBA); therefore using only one channel for the
calculations leads to wasted resources. Packing of data refers to
using the four channels to store and process the data instead of
using just a single channel. By packing the data in the knot array in
an intelligent manner, we can save storage space as well as speed
up the computations. The data can be packed either in the width
direction or in the height direction. However, since the width of
the array is dependent on the order of the basis function being
evaluated, packing it in the width direction will necessitate the
use of different fragment programs for different degrees of the
curves being evaluated. This will make the implementation tedious
because the program for the packed version cannot be directly
extended from the non-packed version. It is also impractical
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Fig. 8. Using an index array to prevent data duplication.

because different programs have to be developed, one each for each
different degree of curve being evaluated.

The data required for the calculation of the B-spline basis
function is completely contained in each row of the knot array.
Hence, it will be simpler to pack the data along the height direction
with each channel corresponding to different evaluation points
as shown in Fig. 7. The first entry of each channel in the row
specifies the parameter value at which the basis functions are to
be evaluated. This kind of packing is also easy to implement since
it directly extends from the non-packed version, requiring only
very minor changes to the fragment program. In addition, the data
access from lower degree basis function to evaluate higher degree
basis functions in the fragment program remain the same for a
particular evaluation point. It is also not required to have different
programs based on the order of the curve being evaluated; the
same program generalizes to any order.

However, there is a disadvantage in packing the data for basis
function evaluation. NURBS curves with repeated knot values
give rise to the special 0/0 case in their evaluation, which we
need to yield a result of O rather than the NaN specified by
IEEE standards. Although many GPUs we have tested return the
non-IEEE-compliant O that we desire, for greater portability and
forward-compatibility we explicitly check for these special cases.
Moreover, since the current generation GPUs are moving towards
IEEE-compliance, they will return a NaN value. Since these 0/0
cases have to be separately handled for each channel, it leads
to numerous if statements in the fragment program, increasing
its length. Older graphics cards evaluate both branches of if
statements and hence they can slow down the computation.
However, the performance drop due to these statements in our
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Fig. 9. Time for evaluating a cubic NURBS curve on two different GPUs.

implementation is negligible if any. The difference in the timings
even in older cards like the ATi Mobility Radeon 9700 is less than
5%. Newer graphics cards have hardware support (dynamic flow
control) for branching and hence this is not a major problem.

We now describe the second, alternative optimization tech-
nique we implemented. In the evaluation of the basis function
in the example given in the previous section, many knot values
were repeatedly used. For example, the knot values required for
the computation of the first 10 parameter values shown in Fig. 4
use the same knot values. One method to reduce the amount of
data transfer in such cases is to use an index array, which contains
indices pointing to the knot values needed for the basis function
evaluation. The knot values are stored separately in another array
and are transferred directly from the CPU to the GPU. The knot ar-
ray will then only contain the parameter value and the index of the
first element in the knot vector required for the evaluation of the
basis functions (Fig. 8).

Using an index array also has its advantages and disadvantages.
There is an obvious reduction in data transfer. On the other hand,
the GPU architecture is not optimized for such texture indirections
or nested texture fetches. The cache is optimized to retrieve data
quickly from nearby memory locations; the cache misses are
presumably the reason that too many texture indirections can
significantly slow performance by introducing too much latency
(latency that can no longer be hidden by the parallel nature
of fragment processing). In addition, the indexed data cannot
be packed anymore because the different channels will point to
different knot positions. Hence even if the data is packed, it will
require four texture fetches that offset the advantage gained by
packing. Therefore, we cannot combine our two techniques.

5.3. Curve evaluation timings

Using the above variations of the GPU algorithm, we timed the
evaluation of NURBS curves on different GPUs. Timings were done
on four different implementations: CPU, GPU packed, GPU non-
packed, and GPU index-based. The non-packed implementation is
the regular implementation without any packing or indexing as
described in Section 5.1.

Fig. 9 shows the curve evaluation timings for a cubic NURBS
curve with different numbers of evaluation points evaluated
on ATi Radeon X1900 (GPU1) and ATi Mobility Radeon 9700
(GPU2) graphics cards. The CPUs used for the evaluation were
Intel Pentium-4 2.8 GHz and Intel Centrino 1.7 GHz processors
respectively. As expected, the evaluation time increases roughly
linearly with the number of points evaluated. It can be seen
that the packed method is a bit faster than the 1.7 GHz CPU
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Fig. 10. Graphical representation of the surface evaluation algorithm.

evaluation. However, the other methods are slower than the
CPU method on both platforms, either due to the amount of
data transferred in the case of the unpacked implementation or
due to the texture indirection in the case of the index-based
implementation. Evaluation timings on other GPUs also followed
the same qualitative trend, with the packed version always the
fastest of the GPU methods.

From these results for 2D NURBS curves, it is not immediately
clear that a GPU implementation for NURBS surface evaluation will
be enough of an improvement over CPU evaluation to justify the
development effort. However, in the case of surface evaluation,
with its higher arithmetic intensity, the GPU win over CPU is far
more pronounced, as described in the later results section. Since
we found the GPU packed method of evaluating the basis functions
to be the fastest of the three different techniques we developed,
we use this method in the surface evaluation algorithm. Since
the surface control points used for surface evaluation are already
four-component vectors (XYZW), additional data packing is not
required for surface evaluation.

6. NURBS surface evaluation

Given all the data for a NURBS surface, our surface evaluation
algorithm computes the surface point coordinates at parametric
coordinates (u, v) in the following manner.

1. Locate the lower-left corner of the sub-mesh of control points
that influence the evaluation point coordinates.
2. Compute the non-zero basis functions along the two parameter
directions.
(a) Compute the non-zero u basis functions using the u direc-
tion knot vector.
(b) Compute the non-zero v basis functions using the v direc-
tion knot vector.
3. Multiply the non-zero basis functions with their corresponding
control points from the sub-mesh and sum the results.

The first step of computing the lower-left corner control point
that influences the current surface point coordinate is equivalent
to the first step in the curve evaluation; it is done on the CPU and
transferred as a 1D texture to the graphics card. The two substeps
of the second step are each performed in the same manner as
computing the basis functions for curve evaluation explained in
Section 4. Finally, the evaluated basis functions are multiplied with
the corresponding control points and added together, as explained
in detail below.

Fig. 10 represents the surface evaluation process pictorially. We
specify the parametric u and v coordinates of the points required
to be evaluated in the CPU. We then calculate the basis functions
corresponding to these coordinates on the GPU using the basis
function evaluation algorithm defined in Section 4 and generate

the two textures for u and v having the basis function values at
the required parameter coordinates. We implemented the packed
version of the basis function evaluation algorithm because it was
the fastest among the different methods discussed in Section 5.2.

Once the basis functions are evaluated, we again alternate
(ping-pong) between output textures to evaluate the final surface
coordinates. We store the control point data in a texture of size
n x m in the GPU memory. We also have a texture of size equal to
the evaluation mesh, call it tex1, which is initialized to zero. Given
a particular u and v coordinate, we look up the coordinates of the
control point that influences the current evaluation point using the
index values stored in the 1D textures calculated in step 1. We then
multiply this control point with its corresponding u and v basis
function values and add it to the corresponding pixel in tex1 using
a fragment program. This fragment program directly renders the
multiplied result to another texture, call it tex2. In the next pass, the
newly multiplied values of this pass are added to tex2 and rendered
directly back to tex1. Thus, the final curve point is evaluated in
k, x k, passes; for example, a bi-cubic NURBS surface point is
evaluated in 16 passes. In our current implementation, since we
evaluate each surface separately, it does not matter if the processed
surfaces have different degrees.

6.1. Dynamic LOD

The NURBS patches that make up a particular model or a
scene are usually of different sizes and at different magnification
levels. In such cases, it would be inefficient to evaluate all the
surfaces at the same level of detail. Therefore, we use different
evaluation grids for different surfaces based on the size of the
surface and the distance of the surface from the eye point. Older
graphic cards were optimized to only work with square power-of-2
textures. Hence, the transitions between the different LODs are not
smooth, leading to popping artifacts between them. Furthermore,
it was not efficient to have different numbers of evaluation points
along the u and v directions. However, newer graphic cards
support rectangular textures of any size. Thus, for the different
LODs, the number of evaluation points change continuously from
the minimum to the maximum value in our implementation. In
addition, the number of evaluation points are different for the u
and v directions. This leads to a better rendering of dynamic scenes
encountered in interactive environments such as solid modeling.
Fig. 11 shows a duck model rendered at different zoom levels. The
LOD varies continuously between the different levels, resulting in
smooth transitions.

We compute the required height and width of the evaluation
mesh by finding the distance of the object from the eye point as
well as the size of the object. Then the connectivity of the points is
generated on the CPU using the selected size. We make use of the
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Fig. 11. Dynamic LOD: Duck rendered at different resolutions based on the
required LOD.
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Fig. 12. Adapted from the OpenGL Programming Guide: Example of a trim-texture.
Only the starred regions that are rendered an odd number of times are finally
displayed.

fact that the connectivity of a 2D mesh in the parametric domain is
the same as the connectivity of the final NURBS surface. This index
information is sent to the graphics card and the surface is rendered
by using the corresponding point coordinate data taken directly
from a texture using a vertex buffer object. This way we eliminate a
redundant and costly operation of reading back the evaluated point
coordinates from the GPU and then sending them back as vertex
coordinates.

7. Trimming

For efficient rendering of a trimmed NURBS surface, the surface
evaluation should be decoupled from trimming. Instead trimming
can be performed with the help of texture mapping using a trim-
texture, a trimming technique first applied to trimmed spline
surfaces by Guthe et al. [1].

The trim-texture is generated by evaluating and rendering the
trim curves in the 2D parametric domain. Even though NURBS
curves can theoretically be used for trim curves, most of the trim
curves in practice are piecewise linear segments. This is because
a space curve on a 3D NURBS surface is usually approximated by
linear segments in the 2D parametric domain. If the trim curves
are described by splines, they can be evaluated and converted to
piecewise linear segments. In our implementation, the trim curves
are evaluated and rendered directly to a trim-texture.

7.1. Trim-texture generation

As described by Woo et al. [21], arbitrary concave polygons
(possibly even including holes) do not need to be tessellated for

(a) Using alpha blending. (b) Using fragment program.

Fig. 13. Difference in trimming using alpha blending versus a fragment program.
Alpha blending produces incorrect results.

rendering. Instead, triangles connecting a common origin to each
polygon edge in turn are rasterized, but only those regions that are
filled an odd number of times are finally rendered. This is shown
in Fig. 12, where only parts of the domain that are rendered once
or thrice are considered to be the part of the surface that is to be
finally rendered. Another advantage of using such an algorithm is
that the orientation of the holes and holes within holes need not
be explicitly considered.

The above algorithm can be implemented either by using the
stencil buffer or by alpha blending. Using the stencil buffer is
sufficient to trim surfaces that are parallel to the view plane;
implementation details for using the stencil buffer are givenin [21].
However, we use an alternate implementation based on the alpha
blending functionality of graphics cards to generate the trim-
texture because the trimmed surfaces may be arbitrarily oriented
or curved.

Some basic preprocessing is required for using alpha blending,
as explained below. The viewport is set up to match the size of the
trim-texture, which is determined based on the required LOD, as
in [1]. The Model View matrix is set to 2D mode with view area
from [0 1] in both width and height. For planar faces, the two
directions correspond to the two orthogonal directions defining
the coordinate system in the plane of the face; for non-planar
faces, the parametric u and v directions that define the texture
coordinate system are used. The background color is cleared to (0,
0, 0, 0). The required blending factors are chosen to perform an
odd/even count. This can be done by toggling the existing value
from O to 1 or 1 to 0 whenever a new fragment is drawn over it.
Once all the parameters are set up, a triangle fan is drawn with
color (1, 1, 1, 1). Thus, the algorithm can be easily extended to
complex shapes such as fonts or irregular holes.

7.2. Rendering

The trim-texture is then used to mask parts of the surface using
a fragment program during the rendering pass. Even though the
trim-texture has alpha values that can be mapped directly to the
surface by using alpha blending, this may lead to incorrect results.
One such example is shown in Fig. 13(a), where alpha blending is
used to cut the holes for a scene with an airplane inside a box. The
correct rendering is shown in Fig. 13(b). Unless all the objects are
rendered in back-to-front order, the blending will not be correct;
the objects behind discarded trim portions will not be rendered.
The problem becomes even more pronounced in the case of curved
surfaces, where the surface itself may be self-occluding. In this
case, since the order in which the fragments are processed by the
graphics card is not defined, the final surface will be rendered
incorrectly and may even have artifacts similar to self-shadowing.

To overcome this problem, only the parts of the surface that lie
outside the trim curves are rendered (Fig. 13(b)). The advantage of
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Fig. 14. Log-scale comparison of evaluation timings for a bi-cubic NURBS surface with increasing evaluation points.

Table 1

Different GPU platforms tested.

GPU VRAM (MB) CPU (GHz) RAM (MB)
ATi X1900 512 2.8 512
nVIDIA Quadro FX4500 512 3.00 2048
nVIDIA Quadro FX3000 256 1.88 1024
nVIDIA GeForce FX6800Go 256 1.60 512

such a method is that the lighting calculations need not be done to
those fragments that are discarded. However, this implementation
uses branching and may lead to a performance drop in older
graphic cards. Our fragment program used for the trimming
operation, written in Cg [22,23], makes use of the discard command
that kills the fragment when the value of the particular color
channel used to trim is 0. To save memory we store different trim-
textures in different color channels of the same texture. We then
switch between the different channels while rendering different
trimmed surfaces.

8. Results

We tested our evaluation method on the different GPU
platforms listed in Table 1.

Fig. 14(a) compares the evaluation timing alone of a single bi-
cubic NURBS patch defined by 144 control points when increasing
the density of the evaluation grid. The evaluation time includes
the time taken to generate the knot array and control point array
on the CPU; the timings will remain the same even if the user
interactively changes the knot values or the control points. The
GPU-based evaluation is faster than the CPU-based evaluation by a
factor of about 50 when evaluated at a large number of evaluation
points. However, the GPU evaluation has more overhead for very
small patches and hence is not suitable for evaluating surfaces
having less than 16 x 16 evaluation points (Fig. 14(b)). The nVIDIA
QuadroFX 3000 is an older graphics card and uses AGP8x bus
architecture. Hence, the data bandwidth is not as high as the other
PCI-e graphics cards tested. As a result, the timings are somewhat
slower but still about 10 times faster than on a CPU. The high
end PCl-e 16x graphics cards from both ATi and nVIDIA produced
almost identical results.

The duck model shown in Fig. 1 consists of three NURBS
surfaces with both non-uniform knots and non-unity weights for
the control points. One of the three surfaces in the model is also
trimmed. Fig. 1 is rendered using an evaluation grid of 64 x 64
points for each surface on a window of size 1280 x 1024. Note
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Fig. 15. Comparison of frame rates with different nVIDIA graphics cards. One-third
of the total NURBS surfaces are non-trivially trimmed.

that the trimmed yellow patch representing the duck’s body fills
most of this window, but has no obvious tessellation artifacts with
this sampling density. This evaluation grid is similar to the one
shown for the largest duck in Fig. 11. In addition, the model can be
interactively displayed with varying LODs without re-sending the
data to the GPU repeatedly. Similarly, any changes to the model
will necessitate transferring only the control points to the GPU.
Fig. 15 compares the frame rates for an animated scene
containing many such ducks swimming in a (tessellated) teapot,
similar to Fig. 1, using our GPU implementation and with the
CPU OpenGL implementation. The scene is again rendered in a
window of size 1280 x 1024; the individual NURBS surfaces, being
smaller than the full screen area, were evaluated on a 16 x 16
grid of evaluation points. One-third of the NURBS surfaces were
non-trivially trimmed. As expected, the frame rate decreases with
the increase in the number of surfaces. However, the decrease
in frame rate is not linear in the number of surfaces. This may
be due to the extra overhead of transferring the control points
data for a large number of surfaces to the graphics card and some
overhead in switching between the VBO of different surfaces. Even
though trimming was not performed while obtaining the OpenGL-
rendered timings, its frame rates are unacceptably slow for more
than about 100 NURBS surfaces, consistently 40-50 times slower
than our GPU-based implementation. In addition, the OpenGL
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(b) OpenGL rendering.

(a) Correct surface.

Fig. 16. Trimmed NURBS surface rendered incorrectly by OpenGL. The figure on
the left shows the correct trimming.
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Fig. 17. Comparison of frame rates with varying per-patch evaluation grid size on
nVIDIA Quadro FX3000 graphics card.

implementation had rendering artifacts at trim curve concavities
while rendering trimmed NURBS surfaces (Fig. 16).

Fig. 17 shows the frame rates for animating the same scene
as the above example but varying the per-patch evaluation grid
size as well as the number of ducks. The frame rates were timed
on the nVIDIA Quadro FX3000 graphics card. The NURBS surfaces
evaluated on a 32 x 32 grid of evaluation points was the slowest,
but for a larger number of surfaces the rates start to converge.

9. Summary and conclusions

We have presented a new method to evaluate and display
trimmed NURBS surfaces on the GPU. Our algorithm evaluates
the NURBS surface point coordinates directly, without resorting to
approximations, using a unified evaluation framework that uses
the same fragment program to evaluate arbitrary degree NURBS
surfaces. Our evaluation framework that calculates all the basis
function values in parallel can be extended to calculate derivatives
and normals, serving as a foundation for modeling operations as
well [24]. We show that packing the basis function arrays into
the four color channels (along their height dimension to preserve
the unified, degree-independent property of the implementation)
yields a more efficient algorithm than unpacked or index-array
based approaches. The method shows great promise for real-time
interaction with exact NURBS models, as seen from the frame rates

we achieved even on older graphics cards. The evaluation timings
show more than 40 times improvement over evaluation on the CPU
for large inputs, and a similar improvement in overall frame rate
compared to the OpenGL implementation. However, this method
is still not optimal for a small number of evaluation points since the
overhead of setting up the GPU for performing the computations
is high in this case. The number of surfaces that can be evaluated
and displayed is primarily limited by texture memory on the GPU
that is used to store the evaluated surface points and the trim data.
We found our method to be capable of interactively evaluating and
rendering up to 300 NURBS surfaces. For interactive display of a
large number of trimmed NURBS surfaces, we have demonstrated
that GPU-based evaluation of the exact surfaces is a viable option.
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