Accelerating Geometric Queries using the GPU

Adarsh Krishnamurthy; Sara McMains

University of California, Berkeley

Berkeley, CA, USA

7/

Kirk Haller
SolidWorks Corporation
Concord, MA, USA

X

l\' F/’

Figure 1: Geometric operations such as silhouette curve extraction and minimum distance/closest point computations between NURBS

surfaces and complex CAD models accelerated using the GPU.

Abstract

We present practical algorithms for accelerating geometric queries
on models made of NURBS surfaces using programmable Graph-
ics Processing Units (GPUs). We provide a generalized framework
for using GPUs as co-processors in accelerating CAD operations.
By attaching the data corresponding to surface-normals to a surface
bounding-box structure, we can calculate view-dependent geomet-
ric features such as silhouette curves in real time. We make use of
additional surface data linked to surface bounding-box hierarchies
on the GPU to answer queries such as finding the closest point on
a curved NURBS surface given any point in space and evaluating
the clearance between two solid models constructed using multi-
ple NURBS surfaces. We simultaneously output the parameter val-
ues corresponding to the solution of these queries along with the
model space values. Though our algorithms make use of the pro-
grammable fragment processor, the accuracy is based on the model
space precision, unlike earlier graphics algorithms that were based
only on image space precision. In addition, we provide theoretical
bounds for both the computed minimum distance values as well as
the location of the closest point. Our algorithms are at least an or-
der of magnitude faster than the commercial solid modeling kernel
ACIS.

CR Categories: [.3.3 [Computer Graphics]: Hardware
Architecture—Graphics Processors; 1.3.3 [Computer Graphics]:
Picture/Image Generation—Display Algorithms; 1.3.5 [Computer
Graphics]: Computational Geometry and Object Modeling—
Geometric Algorithms, Languages, and Systems

Keywords: Silhouette Curves, Minimum Distance, Closest Point,
Clearance Analysis, NURBS, GPU, Hybrid CPU/GPU Algorithms

*e-mail: {adarsh—mcmains } @me.berkeley.edu
Te-mail:khaller @solidworks.com

199

1 Introduction

Geometric queries such as evaluating silhouettes and finding the
minimum distance to a surface play an important role in many
computer aided design and analysis applications that include tol-
erancing, visibility analysis, and accessibility analysis. Minimum
distance queries are especially useful while designing complex as-
semblies to allow for sufficient clearance between different me-
chanical components. Such queries are easily answered if the ob-
jects or models are made of planar faces and have boxy shapes.
However, modern designs make use of curved freeform surfaces;
the standard representation of choice being Non-Uniform Ratio-
nal B-Spline (NURBS) surfaces. Minimum distance queries on
such freeform surfaces are currently being solved by commercial
solid modeling software by first evaluating and tessellating the sur-
face and then finding the minimum distance to the tessellation ver-
tices [Spatial Corporation 2007]. This approach, in addition to be-
ing extremely slow and computationally intensive, is dependent on
the tessellation resolution for the accuracy of the solution; the sur-
face has to be very finely tessellated to get the required accuracy.

A technique to accelerate such slow geometric queries is to use pro-
grammable GPUs. We have developed a unified framework that
uses GPUs as co-processors in accelerating geometric computa-
tions; we make use of the fragment processor in a GPU to perform
parallel parts of the computations and use the CPU to perform the
inherently serial parts. This framework can be extended to solve a
wide range of geometric queries; we give a few practical examples
of using this framework to answer distance and visibility queries.
Previous GPU-based algorithms that render to the screen to per-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

2009 SIAM/ACM Joint Conference on Geometric and Physical
Modeling (SPM ’09), October 4-9, 2009, San Francisco, CA.

Copyright 2009 ACM 978-1-60558-711-0/09/10...$10.00.

form these computations have restricted accuracy corresponding to
the dimensions of the pixel or window. Our framework allows for
the GPU algorithms to operate in the model space; therefore, the
results of these geometric queries are accurate to any arbitrary user-
defined tolerance.

Solid modeling kernels support certain distance queries such as the
minimum distance from a point to a surface and the minimum dis-
tance between two surfaces. Applications of such distance queries
include: finding the closest surface point on a surface to provide
haptic feedback; dimensioning and tolerancing of CAD models;
and constructing distance fields. In this paper we present an al-
gorithm that uses our hybrid CPU/GPU framework consisting of
surface bounding-boxes to accelerate these queries. We provide
theoretical bounds on the accuracy of both the computed minimum
distance as well as the location of the closest point on the surface,
which allow for arbitrary user-defined tolerance values. This is es-
pecially important in CAD systems since these distances might be
used by the designer to define subsequent features; the model might
fail to regenerate if there is an error in the computed distance.

Silhouette curves are defined as a curve of points on the surface
whose normal is perpendicular to the view direction. They are used
in many visibility and accessibility problems; for example, multi-
axis machining, path planning, etc. to separate the visible patches of
the surface from the occluded ones. However, silhouette curves de-
pend on the view-direction and have to be recomputed with changes
in the orientation of the model. In addition, the topology of the
silhouette changes rapidly; hence, we cannot rely on coherence be-
tween the silhouette curves at different view directions to accelerate
their computation. In our framework, we append the surface nor-
mal information to the bounding-box structure to mark points on
the silhouette curves using the GPU, resulting in real-time extrac-
tion. We can interactively provide visual feedback on the screen
while simultaneously computing the silhouette curves in the para-
metric space that is then used by the modeling system. In addition,
we also guarantee theoretical bounds on the extracted curves that
comply with user-defined tolerances.

In this paper, we provide a hybrid CPU/GPU framework that can be
used to accelerate geometric computations. Our main contributions
include:

e A GPU accelerated silhouette curve extraction algorithm that
uses surface normals appended to surface bounding-boxes to
perform the calculations. The silhouette curves are calculated
in the model and parametric spaces while simultaneously be-
ing output to the screen in real time.

A practical GPU algorithm to find the minimum distance to a
surface given any point in space. We use our hybrid frame-
work to compute the distances efficiently in parallel using the
GPU.

A fast algorithm that computes the minimum distance be-
tween two surfaces or between two solid models represented
by B-reps, using bounding-box hierarchies on the GPU. Our
algorithm is orders of magnitude faster than the commercial
solid modeling kernel ACIS in calculating these distances.

A unified framework that uses the GPU as a co-processor to
improve the performance of algorithms used for solving geo-
metric queries. This framework can be extended to accelerate
several related queries that are based on properties of the un-
derlying shapes such as normal or curvature.

Theoretical guarantees for all of our geometric computations.
They allow for user-defined tolerance values that are essential
for integrating our algorithms in a CAD system.

200

1.1 Hybrid Framework

We present a hybrid framework that can use both the CPU and GPU
to perform geometric computations. The main idea is to split the
computations into serial and parallel stages as shown in Fig. 2. To
perform the parallel operations on the GPU, we make use of the
map-reduce parallelism pattern that consists of assigning the com-
putations to separate non-communicating parallel threads [Mattson
et al. 2004]. The inter-communication between the CPU and GPU
is shown in Fig. 3. Once the computations are performed, the com-
puted result can be used by the modeling system in the three differ-
ent ways shown. Read-back is important for integrating the GPU
algorithms with traditional modeling systems. In addition, since
GPUs are designed for pipelining the data only in one direction
from the CPU to the GPU for display, the method of read-back sig-
nificantly affects the performance of hybrid algorithms. The most
efficient method of read-back is reducing the results to a smaller set
of values by using operations such as finding the maximum, min-
imum, sum, or by using non-uniform stream reductions [Sengupta
et al. 2007; Blelloch 1990]. The second method is to directly dis-
play the output on the screen using the GPU. This is ideal for certain
operations that require only visual outputs; for example displaying
the evaluated NURBS surface directly. The last and the most ex-
pensive method is to read-back all the results from the GPU to the
CPU; this might be required for certain computations where the re-
sult of a computation is required for further processing on the CPU.

=

‘ Serial Operations

Map

sfsfelslsle

Parallel Operations

N

‘ Serial Operations }—

Figure 2: Operation flow for performing geometric computations.
The parallel operations are mapped and performed on the GPU
while serial operations are performed on the CPU. The intermedi-
ate parallel output is reduced and read back to the CPU.

Our operations on the GPU fall into three main types. The first type
includes parallel geometric computations that can be performed ef-
ficiently on the GPU. The output of such operations are usually
numeric values that are then stored in the GPU as textures. If an
operation produces more than one output value for each parallel
operation, we can store them using separate channels of the same
texture or using different textures. The second type of GPU op-
erations is parallel search operations that give a binary output of
0 or 1 based on the type of search; these include operations such
as bounding-box intersection tests, finding if a value lies within a
given range, etc. The third type of operations is reductions that are
performed in multiple passes on the GPU. GPU reductions can in
turn be classified into two types. The first type, called standard re-
ductions, include reducing the given input to a single value such as
computing the sum, min, max, etc. Standard reduction operations
are usually performed in O(logn) passes and hence are very effi-
cient. The second type of reductions, called non-uniform stream re-
ductions, reduces the input to a smaller set of values. Non-uniform
stream reduction operations are particularly important when the re-
sult of a reduction operation is not a single value but multiple values
that satisfy a particular criterion. Since the positions of the output
elements do not have any fixed correspondence with the positions of
the input, the stream-reduction process is considered non-uniform.

Parallel
Computation

Serial
Computation

—LCPU M Map
[ReadT
)
Reduce I

b Display J

Traditional

Hybrid CPU/GPU

Figure 3: Schematic showing our hybrid framework that ex-
tends traditional geometric computations to use the GPU as a co-
processor to perform some parts of the computations in parallel.

We make use of an O(n) GPU stream-reduction algorithm that we
presented in previous work [Krishnamurthy et al. 2008; Krishna-
murthy et al. 2009] to perform non-uniform stream reductions.

To perform geometric computations on NURBS surfaces or assem-
blies, we make use of a surface bounding-box structure to map the
computations to the GPU. We make use of Axis-Aligned Bounding-
Boxes (AABBs) constructed from an evaluated mesh of points
on the NURBS surface to accelerate the computations [Krishna-
murthy et al. 2008]. The main advantage of AABBs over Ori-
ented Bounding-Boxes (OBBs) is that several geometric compu-
tations such as finding intersections and distances are simpler in
the case of AABBs. This is especially important because the ef-
ficiency of GPU programs can be reduced dramatically with in-
creases in the complexity of the parallel kernels that are used. The
individual computational kernels for OBBs are more complex and
contain many branching conditions; the GPU has to wait until the
most computationally intensive branch of the kernel in a particular
pass is completed before proceeding to the next pass. In addition,
since OBB kernels make use of more temporary registers, the num-
ber of computations that can be performed simultaneously on the
GPU (called fragments in flight) is reduced; it is difficult to hide
the memory access latency in this case. Thus, we found that the
advantage provided by tight OBBs is offset by the increase in com-
plexity of the algorithms that use them. We achieve better results
by using AABBs even if we must decompose the model to a finer
resolution with AABBs than OBBs in order to maintain the same
tolerance bounds.

2 Background and Previous Work

2.1 Related Work

Extracting the silhouette curve of an object has been used exten-
sively for rendering [Appel 1968; Saito and Takahashi 1990], non-
photorealistic rendering, and hidden-line removal [Elber and Cohen
1990]. [Krishnan and Manocha 1997] make use of silhouette curves
to perform global accessibility and visibility analysis by computing
the visible portions of free-form surfaces from a given viewpoint.
Silhouette curves have also been used extensively in toolpath gen-
eration algorithms [Balasubramaniam et al. 2003] and for NC code
verification [Chung et al. 1998].

Extracting the silhouette curves for a complex model made of
NURBS surface is a complex process and in addition, the silhou-
ette curves have to be recomputed after a change in the view direc-
tion. [Everitt 2002] used the GPU to render the silhouette curves di-
rectly while visualizing the model. However, this method does not
give the modeling system access to the rendered silhouette curves.
[Johnson and Cohen 2001] introduced a method called spatialized

201

normal cone hierarchies to extract silhouettes from free-form sur-
faces. They bound the normal directions possible inside a given
surface patch and construct a hierarchy of normal directions; they
then traverse along this hierarchy to find portions of the surface that
are perpendicular to the view direction.

Minimum distance computations are used by many algorithms that
generate geometrical constructs such as Voronoi diagram and me-
dial axis transforms. They are also used in path planning and robot
motion planning [Gilbert et al. 1988] and for projecting points onto
a patch of a CAD model [Henshaw 2002]. Minimum distance com-
putations on curved NURBS surface are very time-consuming and
hence, the commercial solid modeling system ACIS makes use of
the tessellation of the surface to find the closest vertex or pair of
vertices while performing tolerance analysis [Spatial Corporation
2007]. [Johnson and Cohen 1998] gave a unified framework for
minimum distance computations, which was later extended to find
the closest point for haptics applications [Nelson et al. 2005]. We
use a similar method that uses AABBs to find the regions of the
model that are likely to contain the closest points. However, the
methods they describe were better suited for a serial CPU imple-
mentation, since they make use of the convex hull of the freeform
surface to iteratively refine the search. In our adaptation, the
distance computations and search operations are done in parallel,
which is better suited for a GPU implementation. In addition, we
also provide theoretical guarantees for the solutions we compute.

[Edelsbrunner 1985] prove that the minimum distance between two
convex polygons can be computed in O(log n). However, it is a the-
oretical algorithm that has large time-constants in practice. [Quin-
lan 1994] extend minimum distance computations to non-convex
objects by first performing a convex decomposition and then using
bounding spheres for the convex pieces to create a hierarchy. How-
ever this method is not practical for dynamic geometries since the
convex decomposition might be expensive. [Chen et al. 2008] com-
pute the minimum distance between a point and a NURBS curve
by subdividing the curve into portions that might contain the clos-
est point. Many minimum distance algorithms use Bounding Vol-
ume Hierarchies (BVHs) to accelerate the computations. CPU al-
gorithms usually make use of BVHs that are more complex than
AABB:s. [Gottschalk et al. 1996] make use of OBBs to perform dis-
tance computations. [Larsen et al. 2000] perform proximity queries
using a construct called a sphere swept volume, which consists of a
sphere swept over a point, line or a plane, as primitives of a BVH.

Collision detection and distance field computation are two prob-
lems that are closely related to minimum distance computations that
have been effectively accelerated using the GPU. Occlusion queries
on graphics hardware were used by [Govindaraju et al. 2003] to de-
tect collisions of polygonal meshes in large environments. [Gref3
et al. 2006] solve the collision detection problem by generating a
bounding-box hierarchy for deformable parameterized surfaces and
then detect collisions by checking overlap between the bounding-
boxes using the GPU. [Sud et al. 2004] use the GPU to generate 3D
distance fields by first slicing the model into 2D slices and by us-
ing culling and spatial coherence to reduce the number of distance
computations in each slice. Recently, [Lauterbach et al. 2009] used
the GPU to construct BVHs that can then be used to accelerate col-
lision detection.

There has been only limited use of GPUs to perform geometric
operations because they are restricted to image-space resolution if
the computations are to be performed by rendering on the screen.
[Agarwal et al. 2003] make use of the GPU to perform geomet-
ric computations on a stream of points by using point-line dual-
ity. They compute geometric properties such as diameter and width
of a set of points. However, these algorithms are not stable for

points that are very close and are limited to image-space resolution.
[Hoff et al. 2001] use the GPU to perform fast proximity queries on
2D shapes using a pixel grid to perform distance computations, but
their technique does not extend to 3D shapes. Recently, researchers
at SINTEF accelerate spline intersections by using the GPU to test
for intersections and iteratively subdivide the spline patches until a
prescribed accuracy is attained [Briseid et al. 2006; Dokken et al.
2005].

2.2 NURBS Evaluation and Modeling

Our minimum distance computation and silhouette extraction algo-
rithms build on our previous papers on GPU NURBS evaluation
and modeling. We present a short outline of our GPU algorithms
that were explained in detail in [Krishnamurthy et al. 2007; Krish-
namurthy et al. 2008; Krishnamurthy et al. 2009]. In our NURBS
evaluation paper, we developed a method to directly evaluate a
mesh of points on a NURBS surface using the GPU. Our algorithm
used a fragment program to evaluate a NURBS surface of arbitrary
degree in several passes. After evaluation we have the NURBS sur-
face as 4-component vectors—(z, y, 2z, w) coordinates—in space
stored as a texture on the GPU. While rendering, we interpret these
values stored in the texture as vertex coordinates using a Vertex
Buffer Object (VBO) and display it directly on the screen.

Figure 4: Surface bounding-boxes constructed from points evalu-
ated on a NURBS surface.

In our NURBS modeling work [Krishnamurthy et al. 2008; Krish-
namurthy et al. 2009], we construct surface AABBs that enclose a
surface patch having four adjacent surface points as corners (Fig. 4).
As a first step in the construction, we find the minimum and maxi-
mum coordinates of the four adjacent surface points to fit an AABB.
However, the AABBs constructed by this method do not guaran-
tee that the surface patch lies completely inside the constructed
bounding-box. In order to guarantee complete coverage of the sur-
face patch, we find the maximum possible deviation K of a curved
surface from the linearized approximation, and then expand the
bounding-boxes in all the three dimensions by K (Fig. 5). The
analytical expression for the factor that can be used to expand the
bounding-boxes based on the surface curvature is given by [Filip
et al. 1987]. They show that if a parametric C surface is evaluated
at (n+1) x (m+1) grid of points, the deviation of the surface from
the piecewise linear approximation cannot exceed the constant K
defined by Equations (1) — (4). We use this constant K in comput-
ing the bounds for our closest point algorithms.

x| |0%y| 0%
My = max {max(w a2 | aT)} M
0%z 0%y 0%z
M= (o) {max (‘ Oudv |’ ‘ Audv |’ ‘ Oudv)} @
x| |0%y]| |0%z
o = s o (|5 (58 [5])] @

1 /1 2 1
K== (—2Ml+—M2+—2M3) @)

8\ n nm m

\L~>’K|e 9‘Ke

< [\

s

3|

=

D

Figure 5: We expand the AABBs by K in all three dimensions to
guarantee that the surface patch is completely enclosed.

3 Geometric Queries on NURBS Surfaces

We present first geometric queries that are performed on individual
NURBS surfaces and later in Sec. 5 extend them to complex objects
made up of multiple curved surfaces.

3.1 Silhouette Curves Extraction

We first explain how we can extract silhouette curves in real time
using our hybrid framework. Using our NURBS evaluator, we eval-
uate the surface normals at the evaluated points and store them as
a separate texture on the GPU. We then send to the GPU the view
vector v as a constant. Using the GPU, we compute the sign of the
dot-product of v with each of the surface normals at the four ver-
tices that are inside each bounding box in parallel (Fig. 6). We then
test if the sign of any of the dot-products is different from the oth-
ers; we mark the surface patch inside the bounding-box as a patch
that contains part of the silhouette curve if they are different. We
can check for the variation in sign by only checking the sign of
the six possible products of the four dot-products taken two at a
time; these operations reduce the number of branching conditions
and hence, can be done efficiently in parallel using the GPU.

View Direction
\ n,
n, v 4

A

Ay

Figure 6: We calculate the dot-product of the view direction with
the four surface normals of the points inside the bounding-box. We
mark the surface as part of the silhouette curve if the sign of any
dot-product differs from the others, as in this example.

Once we have marked all the bounding-boxes that contain the sil-
houette curve in the texture, we perform non-uniform stream reduc-
tion to get a list of bounding-boxes that contain the silhouette curve
(Fig. 7). We find the median of the four points that are inside the
bounding-box on the CPU and output it as a point on the silhou-
ette curve. Once we have points on the silhouette curve, we use a
greedy algorithm that connects closest points [Krishnamurthy et al.
2009] to fit a polyline. This polyline can then be used by the mod-
eling system for further operations. We also simultaneously map
the marked texture onto the surface, which renders real-time inter-
active updates of the silhouette curves. In addition, since each of
our points are within the bounding-box, the points we compute on

View Direction

Normals

Data Transfer

Points on the
silhouette curve

!

Curve F{tting

Silhouette Curve

CPU/GPU

Non-Uniform
Stream
Reduction

Figure 7: Schematic showing our silhouette extraction algorithm
that follows our proposed hybrid framework.

the silhouette curves have known tolerance values both in the model
space and in the parametric space. If a higher accuracy is required
in any particular region, we re-evaluate only that part of the surface
at a higher resolution to meet the required tolerances.

3.2 Minimum Distance to a NURBS Surface

The next geometric query we accelerate using the GPU is com-
puting the minimum distance and the closest point on a NURBS
surface given any point in space. As a first step, we evaluate the
NURBS surface as a grid of points using our NURBS evaluator and
construct surface AABBs enclosing four neighboring points. Using
these bounding-boxes and the input point, we calculate the range of
distances to each bounding box as explained in Sec. 3.3.

Fig. 8 shows how our GPU closest point algorithm fits into our
hybrid framework. We first use the GPU to compute the minimum
and maximum distance to each AABB efficiently in parallel. These
distances are stored using the red and green channels in a min/max
texture on the GPU. We then perform a parallel reduction in logn
passes on the GPU to find the bounding-box with the minimum
lower value for the distance range. We read back the range of this
particular bounding-box. In the next pass, we use the upper-bound
of this particular bounding-box as a distance cutoff to search for
potentially close bounding-boxes. We use the GPU to perform a
parallel search on the same min/max texture we computed in the
first step to find all the bounding-boxes whose range lie within the
upper-bound. This prunes the list of bounding-boxes to search for
the closest point; we read back this smaller list by performing non-
uniform stream reduction on the results of the search.

Once we read back the potentially close bounding-boxes, we ap-
proximate the surface patch inside each of the bounding boxes with
two triangles formed from the evaluated surface points. We then
find the distance to each of these triangles and finally choose the
one with the minimum distance. We also find the point lying on
the triangle that has the minimum distance as the closest point on
the surface. We prove that the evaluated minimum distance and the
calculated closest point lie within theoretical bounds based on the
surface approximation and the distance of the closest point from the
given point in Section 4.

3.3 Minimum and Maximum Distance to an AABB

The first step of our minimum distance algorithm requires the com-
putation of the minimum and maximum distance between a point
and an AABB. Since we want to perform these computations in
parallel for each AABB, the computations have to be efficient and

203

Max KEY
E i ﬁ = Distance Range
0

W -
i

Min/Max Distances

Parallel Find

!
i,

T

Upper bound of
Minimum Distance

Data Transfer

>
o
Q
=)
o
(&)

Non-Uniform
SlicE)
Reduction

=

:

u = o
HI iR
Ll U U U
Bounding-Boxes
within Range

Addresses

Figure 8: Schematic of our closest point algorithm showing the
inter-communication between the CPU and GPU. The vertical bars
represent the range of minimum and maximum distances from the
point to the bounding box.

optimized for the GPU. The maximum distance can be computed
in a straight-forward manner by finding the vertex of the bounding-
box that is farthest from the given point. However, to compute the
minimum distance, we not only need to find the minimum distance
to the vertices of the AABB but also to the faces. The number of
computations becomes prohibitively many if we have to check all
the possibilities.

In order to efficiently compute the minimum and maximum dis-
tance, we make use of the fact that the bounding-boxes are axis-
aligned. This makes the calculations simpler and unified for com-
puting both the minimum and maximum distance simultaneously
(Fig. 9). For computing the maximum distance from a point O
to an AABB, we compute the maximum distance along each axis
separately and finally take the L2 norm of the individual maximum
distances to find the maximum distance (Equations (5) — (8)). How-
ever, if we extend the same method to compute the minimum dis-
tance, we have to make sure that the individual distance components
are non-zero; if we directly subtract the half bounding-box widths,
we will end up with negative distances. To overcome this, we take
the minimum distance along a particular direction as zero if it is
negative (Equations (9) — (12)).

Tmaz = Dee + Be (5)

Zmazxr = Dcz + Bz (7)

Dias = \/(w%naz + y'rQnaz + Z'rznu.z) (8)
Tmin = ma'X(DCl' - Bw7 0) (9)
Ymin = max(Dey — By, 0) (10)
Zmin = max(D., — B;,0) (11)

This formulation is efficient for GPU implementation, since it has
the least number of branches (one for each max while computing
the minimum distances). We implement these equation using a sin-
gle fragment program and output the minimum and maximum dis-
tance to a texture using the red and green channels. Thus the mini-
mum and maximum distances are computed simultaneously for all

2B

2B,

(a) Maximum Distance

2B

X

(b) Minimum Distance

Figure 9: Efficiently computing the maximum and minimum distance between a point and an AABB. The example shown here is for the 2D
case, but the method can be extended to 3D. See Equations (5) — (12).

AABBsS in parallel. We then use these min/max distances as the in-
put texture for finding the minimum distance to a NURBS surface
(Fig. 8) as explained in Sec. 3.2.

4 Theoretical Bounds for Minimum Distance
Computations

In this section we give theoretical bounds for both the computed
minimum distance and the location of the closest point on the
curved surface given any point in space.

Theorem 1. (Minimum Distance Bound) The computed minimum
distance does not deviate from the theoretical minimum distance to
the actual surface by more than the surface deviation value K.

Proof. Let O be the point from which we want to find the minimum
distance to a curved surface patch S showed in green in Fig. 10. Let
Ai, Aa, As be three points (of the four points used to construct the
bounding-box) evaluated on the surface. The surface can be ap-
proximated linearly by triangle A; A2 As; the maximum deviation
of the linear approximation from the curved surface is K (Eqn. (4)).
Let @ be the actual point closest to O on the curved surface and P’
be the computed closest point on the triangle. Let P be the clos-
est point to P’ on the surface. Since @ is the closest point on the
surface from O, OQ < OP. From triangle OPP’, by applying tri-
angle inequality to the sides, we get OP < OP’ + PP’. Since the
maximum deviation of the surface from the triangle is K, distance
PP’ < K. Combining these inequalities, we get OQ < OP' + K
or OQ — OP’ < K. This shows that the distance OQ, the theoreti-
cal minimum distance, cannot be larger than the computed distance
OP’ by more than K.

Now, consider the point on the triangle that is closest to (), call
it Q’. In this case OP’ < OQ’ since P’ is the closest point on
the triangle from O. Again from triangle OQQ’, we get OQ’ <
0Q + QQ' and QQ’ < K since Q' is the closest point on the
triangle from Q. Combining these three inequalities, we get OP’ <
0Q + K or OP' — OQ < K. This shows that the theoretical
minimum distance cannot be smaller than the computed distance by
K. Combining the minimum and maximum bound on the distance,
we get |OP' — 0Q| < K. O

Thus, from Theorem 1, we know that the theoretical minimum dis-
tance is bounded to lie within the range (d — K, d + K), where d
is the computed minimum distance. We now show how we use this
bound to prove that the location of the closest point we compute is
also bounded.

204

- Curved Surface (P, Q)
A, |:| Linear Approximation (P, Q')
Figure 10: lllustration to prove the bound for the minimum com-
puted distance. The actual surface is shown in green while the lin-
earized approximation is shown in orange.

Theorem 2. (Closest Point Location Bound) The maximum possi-
ble distance between the computed closest point and the theoretical
one is V4K d + K2 where d is the computed minimum distance to
the surface.

Proof. From Theorem 1, the theoretical minimum distance cannot
deviate from d by more than K, i.e. OQ € [d— K,d + K].
We have two possible cases: the closest point P’ computed on the
plane lies inside the triangle used to approximate the surface or it
lies on one of the edges of the triangle (see Fig. 11(a) and Fig. 11(b),
which show a 2D cross-section). In the first case (Fig. 11(a)), the
minimum distance bound restricts the theoretical closest point () to
lie in an annular region between spheres with center O and radii
d + K and d — K (marked in blue). From our tessellation bound
K, we know that the actual surface lies within a region of width 2K
centered around the approximating triangle (marked in red). Thus
the point @ lies in the intersection of these overlapping regions.
The maximum possible distance P’Q in this intersecting region is
V4Kd+ K?. In the second case (Fig. 11(b)), the approximating
triangle is oriented at an obtuse angle with respect to OP’. In this
case, the maximum distance in the overlapping region occurs only
when O P’ is perpendicular to the triangle; for all other angles of
rotation of OP”, it is always less than v/4Kd + K2 (please refer
to the Appendix for a detailed explanation). Hence, the maximum
possible distance between the computed closest point and the theo-

retical one is always v4Kd + K?2. O

Curved Surface

Ja+xy—@-x»

=\4dK

Linear Approximation

= === Max Possible Deviation
- Minimum Distance Bound
|:| Linear Approximation Bound

P'Q=4dK +K*

(a) Case 1

(b) Case 2

Figure 11: lllustration to evaluate the bound for the computed closest point location when the closest point on the plane lies either (a) inside

or (b) on the edge of the triangle approximating the surface.

Thus, both the minimum distance computed and the location of the
closest point are bounded. We show in the Results section that
these theoretical bounds translate to realistic values that are useful
in practice. Next, we extend our minimum distance computations to
compute minimum distance between two NURBS surfaces or two
complex CAD objects represented as B-reps.

5 Clearance Analysis

5.1 Minimum Distance Between Two NURBS Surfaces

We use a method similar to finding the minimum distance from a
point to a surface to find the minimum distance between two sur-
faces. However, we cannot use this method directly because the
number of distance comparisons increase as O(n?), where n is
the number of AABBs of each surface. Therefore, we make use
of a method that uses bounding-box hierarchies to successively re-
fine the number of potentially-close bounding-box pairs. We show
that this approach, which is similar to a breadth-first search, can
also be fit into our hybrid framework. We perform the search for
potentially-close bounding-box pairs in parallel at each level using
the GPU.

Level n

|1=|o|2:n1zs

o 1| 2| 3] of 1|23z

Refine to Next
Level

ol 1| 2| 3]of 1] 2]3s

ol of 12| 3fo| 1|23

2]
Box
Hierarchy 1

Min/Max Distances

l

Parallel Search for
i} Potentially Close
AABB

i !
o1
Non-Uniform
Stream Reduction
Box

Hierarchy 2

ol

203

o
i

(=

=
[y

©
-

©
a
>
o
9
]
o
(@)

2|3

Potentially
Close AABBs

Figure 12: We perform minimum distance computation between
two NURBS surfaces with the help of AABB hierarchies for both
the surfaces. We compute a list of potentially close bounding-boxes
at each level using the GPU and then refine on the CPU until we
reach a set of potentially close bounding-boxes at the lowest level.

205

1010

108

108

104

102

Hierarchy Level

—-AABBs per Surface -=Total AABB Pairs -+ Potentially Close AABBs

Figure 13: Plot showing the actual number of AABB pairs com-
pared during a typical minimum distance computation. The num-
ber of pairs being tested in parallel remains almost constant after
level 3 of the hierarchy. Note logarithmic scale used for the y-axis.

We first generate a bounding-box hierarchy by recursively combin-
ing four AABBs in a level to get a bigger AABB of the next higher
level. Thus, we construct an AABB hierarchy starting with the sur-
face bounding-boxes and finally reaching a single, level-0 bound-
ing box. This operation can be effectively performed in O(logn)
passes using the GPU. We store the bounding-boxes in a manner
that optimizes GPU storage space (Fig 12). This process is per-
formed once after evaluating the surface and constructing the sur-
face bounding-boxes. When the model is transformed, we fit new
AABB:S to the transformed bounding-boxes. However, we still store
and use the original AABBsS, since if we keep only the new AABBs
after every transformation, the bounding-boxes will keep growing
in size.

We compute the minimum distance between the surfaces by re-
cursively going down the hierarchy and finding potentially-close
bounding-boxes at the base level of the hierarchy. We start at
level 1 of the hierarchy where we compute the minimum and max-
imum distance between four AABBs from surface 1 with each of
the four AABBs of level 1 from surface 2; we compute 16 mini-

B]x 1 Dcx |B2x
I
| l
1 1 _
T 1 -
: LAl B
1 Pihe
1 - CZ D
C 1 L.~ cy
1YL 0 . 2
2B,
B,
2B

Ix

(a) Maximum Distance

| Dcx |
: B]x BZx :
. |
A - - ———}
1
B
| By G,
Ch
2B, oo R R
2B

Ix

(b) Minimum Distance

Figure 14: Computing the maximum and minimum distance between two AABBs. The equations are similar to the point-AABB distance case.

See Equations (13) —(20)

mum and maximum distance pairs. The method used for finding
the minimum and maximum distance between two AABBs is ex-
plained in Section 5.2. Once we compute the set of minimum and
maximum distances, we prune those AABB pairs that are outside
the range similar to our method described in Section 3.2. We get
a list of potentially-close AABB pairs for this level of the hierar-
chy at the end of the search. We then use the GPU to map the
next finer level of the hierarchy, in sets of 4 x 4 AABB pairs, and
repeat finding the potentially-close AABB pairs in the next finer
level on the GPU (Fig. 12). Finally at the end of the recursion, we
get a list of potentially-closest AABB pairs in the finest or high-
est level of the hierarchy of both the surfaces. Using a hierarchy
to prune AABBs outside the range keeps the number of potentially-
close AABB pairs almost constant. Fig 13 shows that the number of
pairs to be tested increases at first and after level 3 remains almost
constant at a few thousand potentially-close pairs. These computa-
tions can be done efficiently by the GPU in parallel at each level, as
seen in the Results section.

Finally, once we obtain all the potentially-closest AABB pairs at
the highest level, we compute the closest distance between the sur-
face patches enclosed by these AABBs on the CPU since the list of
pairs is usually small. We approximate each surface patch with two
triangles and then compute the closest distance between the trian-
gles. Similarly we also compute the pair of closest points that have
the minimum distance between them.

5.2 Minimum and Maximum Distance Between Two
AABBs

We extend our method described in Sec. 3.3 to compute the mini-
mum and maximum distance between two AABBs (Fig. 14). Simi-
lar to the point case, we compute the minimum and maximum dis-
tance along each dimension and then calculate the overall minimum
and maximum distances (Equations (13) — (20)). As before, if any
component is negative while computing the minimum distance, we
take that component as zero.

Tmaz = Dex + Biz + Bax (13)
Ymaz = Dey + B1y + Bay (14)
Zmaz = Dez + Bz + Ba. (15)
Dimaz = V/ (Thaz + Y2as + Zraa) (16)

Tmin = maX(Dcz — Bz — B2z, 0) (17)
Ymin = max(Dey — B1y — Bay,0) (18)
Zmin = maX(Dcz — By, — BQZ7 0) (19)

These equations are implemented using a fragment program on the
GPU; we output the values to the red and green channels of a tex-
ture. The distances are computed for all potentially-close AABB
pairs at a particular level in parallel and are then used for finding
the potentially-close AABB pairs in the next level as explained in
Sec. 5.1.

5.3 Minimum Distance Between Two Complex Objects

Finally, we extend our minimum distance computations between
NURBS surfaces to complex objects made up of many NURBS sur-
faces. CAD systems have support for this query to give feedback
about the clearance between the models in an assembly while the
user is manipulating them. However, existing systems are not inter-
active due to long computation times for performing this query. We
perform this query in two stages; in the first-stage we find a list of
potentially close surface pairs and in the second-stage we find the
minimum distance between the surfaces.

Voxel-based First Stage

In the voxel-based approach for the first-stage, we construct a grid
of voxels in the region occupied by the object (Fig. 15). We then
consider these voxels as individual AABBs to perform the mini-
mum distance computation. We create the voxel representation of
the model as a preprocessing step. We first overlay a regular voxel
grid that covers the object completely. We then use the coarse tes-
sellation of the object that is used for display to populate the voxel
grid. For each triangle in the tessellation, we find the voxels that
the triangle intersects and then add a reference in the voxel to the
surface to which the triangle belongs. Thus each voxel has informa-
tion about its minimum and maximum point extents that define the
AABB and a list of surfaces that intersect it. Since this is done only
once per object when the object is loaded for display, we perform
this operation on the CPU. In addition, since this is a linear O(n)
operation, where n is the number of triangles in the tessellation, it
is fast.

206

e
N

T
%

AAY,"

AVAVA)

&

2 AYAY

Figure 15: A complex model and its voxel representation. We store
the surfaces that intersect with a particular voxel to accelerate the
minimum distance computation.

As a first step in finding the closest points, we find a set of
potentially-close voxel pairs by performing a single pass of mini-
mum distance computation. To perform this operation on the GPU,
we map the voxels from the first object to the rows and the voxels
from the second object to the columns of a 2D texture (Fig. 16).
We compute the minimum and maximum distances for each voxel
pair of the two objects and output these distances to the texture.
This texture is then used to find the list of potentially-close voxel
pairs that lie within the range of the closest voxel pair (as in Fig. 8).
We perform non-uniform stream reduction to transfer address in-
formation of the potentially-close voxel pairs to the CPU. Since
each voxel has information about the surfaces that pass through it,
we can create a list of potentially-close surface pairs from these
potentially-close voxel pairs. We also make sure that there are no
duplicated entries in the surface pairs list, since the same surface
can pass through many voxels in the potentially-close voxel pair
list.

List of Voxels I

Min/Max Distances

Figure 16: We map the list of voxels of one object to the rows and
the other object to the columns of a 2D texture to compute the min-
imum and maximum distances between the voxels.

207

Surface-based Second Stage

In the second stage, we compute the minimum distance for each
surface pair in the potentially-close surface list using our algorithm
explained in Sec. 5.1. We can then output the minimum distance or
clearance between the two objects as the minimum distance com-
puted from all the surface pairs. We also output the points on each
surface as the closest points on the two objects. Even though we
use the coarse tessellation for constructing the voxel grid, we do not
use it for the minimum distance computations. Our computations
are performed using the NURBS surfaces directly and lie within
the computed bounds. Hence, they are more accurate than only us-
ing the tessellation for the computations. In the Results section we
show that our algorithm performs orders of magnitude better than
commercial CPU systems tested.

6 Results

We timed our GPU-accelerated queries on a 2.66GHz CPU run-
ning Windows Vista with 4GB of RAM and an NVIDIA GeForce
9800GX2 GPU with 512MB graphics memory. We compare our
timings to perform the geometric queries with those of the com-
mercial solid modeling kernel ACIS (v18).

Silhouette Timings

We compared the time taken by ACIS to extract the silhouette
curves from a bi-cubic NURBS surface made up of 100 x 105
control points. We evaluated the silhouette curves using the stan-
dard ACIS tolerance of 102 measured in the parametric space
[0,1] x [0,1]. The GPU accelerated algorithm, in addition to be-
ing at least an order of magnitude faster (Table 1), on average output
more than 5 times the number of points on the silhouette curves than
ACIS. This is because we not only maintain the tolerance on the
position of the points but also on the spacing between them, which
leads to a better polyline approximation of the silhouette curves.

View Segments ACIS GPU Speed-up
Time (s) Time (s)

(0,1,1) 2 0.802 0.0093 86x

(1,1,0) 3 0.852 0.0091 94x

(1,0,1) 2 0.890 0.0010 89x

(1,1,1) 3 0918 0.0090 102x

Table 1: Time to extract silhouette curves of a NURBS surface from
different views.

NURBS Minimum Distance Timings

We timed our minimum distance computations between two curved
NURBS surfaces by interactively translating as well as rotating one
surface made of 199 x 33 control points relative to the another sur-
face made of 100 x 105 control points (Fig. 1). Fig. 17(a) shows
the interactive computation times recorded during the interaction;
the computation times were less than 0.15 seconds for most posi-
tions, a near-interactive frame rate of 8 — 10 fps. Fig. 17(b) shows
the distance and position tolerances computed corresponding to the
runs in Fig. 17(a). Since these tolerance values are dependent on
the model size, we report them as a fraction of the model size in
order to make them consistent with tolerance definitions used by
ACIS [Corney and Lim 2001]; a value of 0.01 corresponds to 1%
of the model size. The model size is the length of the diagonal of
the smallest AABB that will enclose the model.

o
w
a

o
w
o

o
N
a

o
1N}
o

o
o

Computation Time (s)

o
o

o
=}
@

0.00

Interactive Runs

(a) Computation Time

Tolerance (fraction of model-size)

1.0E+00

1.0E-01

|

1.0E-02

1.0E-03

1.0E-04

1.0E-
OE-05 Interactive Runs

—+—Minimum-Distance -#-Closest-Point Position

(b) Tolerance

Figure 17: Interactive times for evaluating the minimum distance between two NURBS surfaces and the corresponding distance and position

tolerances scaled with respect to the maximum model size.

We recorded the time taken by ACIS to compute the minimum dis-
tance at some arbitrarily chosen locations of the NURBS surfaces
relative to one another. We set the tolerance value for ACIS to
be 4 x 1072, well looser than our position tolerances reported in
Fig 17(b). Table 2 summarizes the results of our NURBS minimum
distance computations. The GPU accelerated algorithm is at least
two orders of magnitude faster than ACIS. This can be explained by
the fact that ACIS first tessellates the object to get a dense mesh of
points on the surface and then performs the minimum distance com-
putation on these points. We on the other hand use our fast NURBS
evaluator to evaluate the surface and construct surface bounding-
boxes in real time. In addition, we not only achieve better per-
formance but also a higher accuracy; our results have theoretical
bounds that are practical for use in a CAD system.

Position | ACIS Time (s) | GPU Time (s) | Speed-up
1 67.3 0.141 477x
2 68.7 0.097 708x
3 68.8 0.191 681x
4 64.5 0.203 318x

Table 2: Time for performing minimum distance computations be-
tween two NURBS surfaces.

Object Clearance Timings

We performed object clearance computations using the CAD mod-
els listed in Table 3; the models are of approximately the same com-
plexity as standard CAD models used in a mechanical assembly.
We used a voxel grid of 40 x 40 x 40 to perform the first-stage of
the minimum distance computations. The objects were also tessel-
lated to a coarse level that is sufficient for display; the number of
triangles in this tessellation is given in Table 3.

Minimum distance queries were performed between the object pairs
shown in Table 4; the objects were randomly positioned with re-
spect to each other to perform the queries using both ACIS and our
GPU accelerated algorithm. It can be seen that the GPU accelerated
algorithm is again at least an order of magnitude faster than ACIS.
We can even perform these computations interactively with slightly
less complex objects or if the user specifies a subset of an object to
compute the minimum distance.

208

Object Surfaces | Triangles
Scooby 157 72094
Toy Car 127 17170
Car Body 80 7134

Table 3: Complexity of the objects used for the minimum distance
computations. The number of triangles shown is the default coarse
level of tessellation used for display.

7 Conclusions

We have developed a hybrid framework that uses GPUs to acceler-
ate geometric computations. We have shown that two important ge-
ometric queries, finding the minimum distance between models and
silhouette curve extraction, can be effectively performed using our
framework. Our algorithms have theoretical bounds and are based
on object-space resolution instead of just image-space resolution.
They make use of actual surface data and not just the tessellation,
which make them independent of tessellation errors. We also show
tremendous performance improvements over existing commercial
CPU-based systems.

Our framework can be easily extended to solve other CAD opera-
tions such as intersection curve evaluation and collision detection.
We find that having alternating serial and parallel stages and us-
ing the map-reduce motif for parallelism to be ideally suited for
developing geometric algorithms that use the GPU. In addition, the
parallel stages can be easily modified to be executed on a multi-core
CPU in the absence of a powerful GPU. Our framework provides
for maximum flexibility and optimized performance in developing
fast geometric algorithms.

Acknowledgments

We would like to thank NVIDIA and AMD for providing us with
their hardware. This material is based upon work supported in
part by SolidWorks Corporation, UC Discovery under Grant No.
DIGO07-10224, and the National Science Foundation under Grant
No. 0547675.

ACIS GPU Improvement

Objectl Object2 - - -

Time (s) | Tolerance | Time (s) Tolerance | Time | Tolerance
Toy Car Car Body 9.73 1072 0.939 2.5 x107° 10x 408x
Scooby Car Body 193.50 1072 1.252 | 22.1 x 107° 155x 45x
Scooby Toy Car 118.63 1072 1.667 | 2.8x107° | 7Ix 361x
Car Body | Car Body 17.34 1072 0.439 2.2 x107° 39x 463x
Scooby Scooby 71.42% 1071 0.533 | 21.7 x 107° 134x 462x

Table 4: Time for performing minimum distance computations between different complex objects. *The tolerance in this case was reduced

because otherwise the computations did not finish.

Figure 18: The different cases that were used for timing the minimum distance computations.

References

AGARWAL, P., KRISHNAN, S., MUSTAFA, N., AND VENKATA-
SUBRAMANIAN, S. 2003. Streaming geometric optimization
using graphics hardware. In 11th European Symposium on Algo-
rithms.

APPEL, A. 1968. Some techniques for shading machine renderings
of solids. In Proceedings of the AFIFPS Spring Joint Computing
Conference, vol. 32, AFIFPS, 37-45.

BALASUBRAMANIAM, M., SARMA, S. E., AND MARCINIAK,
K. 2003. Collision-free finishing toolpaths from visibility data.
Computer-Aided Design 35, 4, 359 — 374.

BLELLOCH, G. E., Ed.
Computing. MIT Press.

1990. Vector Models for Data-Parallel

BRISEID, S., DOKKEN, T., HAGEN, T. R., AND NYGAARD, J. O.
2006. Computational Science - Lecture Notes in Computer Sci-
ence, vol. 3994/2006. Springer, ch. Spline Surface Intersections
Optimized for GPUs, 204-211.

CHEN, X.-D., YONG, J.-H., WANG, G., PAUL, J.-C., AND XU,
G. 2008. Computing the minimum distance between a point
and a NURBS curve. Computer-Aided Design 40, 10-11, 1051 —
1054.

CHUNG, Y. C., PARK, J. W, SHIN, H., AND CHOI, B. K. 1998.
Modeling the surface swept by a generalized cutter for NC veri-
fication. Computer-Aided Design 30, 8, 587 — 594.

CORNEY, J., AND LM, T. 2001. 3D Modeling with ACIS. Saxe-
Coburg.

DOKKEN, T., SKYTT, V., HAGEN, T. R., AND NYGAARD, J. O.
2005. US Patent 20080259078 - Apparatus and Method for De-
termining Intersections.

EDELSBRUNNER, H. 1985. Computing the extreme distances be-

209

tween two convex polygons. Journal of Algorithms 6, 2, 213—
224,

ELBER, G., AND COHEN, E. 1990. Hidden curve removal for free
form surfaces. In SIGGRAPH 1990, ACM, 95-104.

EVERITT, C. 2002. One-pass silhouette rendering with GeForce
and GeForce2. White paper, NVIDIA Corporation.

FIiLIP, D., MAGEDSON, R., AND MARKOT, R. 1987. Surface
algorithms using bounds on derivatives. Computer Aided Geo-
metric Design 3, 4,295-311.

GILBERT, E. G., JOHNSON, D. W., AND KEERTHI, S. S. 1988.
A fast procedure for computing the distance between complex
objects in three-dimensional space. [EEE Journal of Robotics
and Automation 4, 2, 193-203.

GOTTSCHALK, S., LIN, M. C., AND MANOCHA, D. 1996. OBB-
Tree: A hierarchical structure for rapid interference detection. In
ACM SIGGRAPH, ACM, 171-180.

GOVINDARAJU, N. K., REDON, S., LIN, M. C., AND
MANOCHA, D. 2003. CULLIDE: Interactive collision detection
between complex models in large environments using graphics
hardware. In ACM SIGGRAPH/EUROGRAPHICS Conference
on Graphics Hardware, Eurographics Association, 25-32.

GRESS, A., GUTHE, M., AND KLEIN, R. 2006. GPU-based colli-
sion detection for deformable parameterized surfaces. Computer
Graphics Forum 25, 3, 497-506.

HENSHAW, W. D. 2002. An algorithm for projecting points onto
a patched CAD model. Engineering with Computers 18, 3, 265—
273.

Horr, K. E., ZAFERAKIS, A., LIN, M., AND MANOCHA, D.
2001. Fast and simple 2D geometric proximity queries using
graphics hardware. In 13D "01: Proceedings of the 2001 Sympo-
sium on Interactive 3D Graphics, ACM, 145-148.

(d+K) —(d-K)?
~JadK

(a) Upper Limit Case

(b) Lower Limit Case

(¢) General Case

Figure 19: The three different cases that can arise when the closest point computed is on the edge of the triangle.

JOHNSON, D., AND COHEN, E. 1998. A framework for efficient
minimum distance computations. [EEE International Confer-
ence on Robotics and Automation 4, 3678-3684.

JOHNSON, D. E., AND COHEN, E. 2001. Spatialized normal cone
hierarchies. In I3D ’01: Proceedings of the 2001 Symposium on
Interactive 3D Graphics, ACM, 129-134.

KRISHNAMURTHY, A., KHARDEKAR, R., AND MCMAINS, S.
2007. Direct evaluation of NURBS curves and surfaces on the
GPU. In ACM Symposium on Solid and Physical Modeling,
ACM, 329-334.

KRISHNAMURTHY, A., KHARDEKAR, R., MCMAINS, S.,
HALLER, K., AND ELBER, G. 2008. Performing efficient
NURBS modeling operations on the GPU. In ACM Symposium
on Solid and Physical Modeling, ACM, 257-268.

KRISHNAMURTHY, A., KHARDEKAR, R., McCMAINS, S.,
HALLER, K., AND ELBER, G. 2009. Performing efficient
NURBS modeling operations on the GPU. IEEE Transactions
on Visualization and Computer Graphics 15, 4, 530-543.

KRISHNAN, S., AND MANOCHA, D. 1997. An efficient surface
intersection algorithm based on lower-dimensional formulation.
ACM Transactions on Graphics 16, 1, 74-106.

LARSEN, E., GOTTSCHALK, S., LIN, M., AND MANOCHA, D.
2000. Fast distance queries with rectangular swept sphere vol-
umes. Proceedings of ICRA "00: IEEE International Conference
on Robotics and Automation 4, 3719-3726.

LAUTERBACH, C., GARLAND, M., SENGUPTA, S., LUEBKE, D.,
AND MANOCHA, D. 2009. Fast BVH construction on GPUs. In
Proceedings of Eurographics 2009, Eurographics Association.

MATTSON, T. G., SANDERS, B. A., AND MASSINGILL, B. L.
2004. Patterns for Parallel Programming. Addison-Wesley.

NELSON, D. D., JOHNSON, D. E., AND COHEN, E. 2005. Haptic
rendering of surface-to-surface sculpted model interaction. In
SIGGRAPH ’05: ACM SIGGRAPH Courses, ACM, 97.

QUINLAN, S. 1994. Efficient distance computation between non-
convex objects. In Proceedings of IEEE International Confer-
ence on Robotics and Automation, IEEE, 3324-3329.

SAITO, T., AND TAKAHASHI, T. 1990. Comprehensible rendering
of 3-D shapes. SIGGRAPH Computer Graphics 24, 4, 197-206.

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D.
2007. Scan primitives for GPU computing. In Symposium on
Graphics Hardware, Eurographics Association, ACM, 97-106.

210

SPATIAL CORPORATION, A. D. S. C. 2007. ACIS Geometric
Modeler: User Guide, version 18.0 ed.

SuD, A., OTADUY, M. A., AND MANOCHA, D. 2004. DiFi: Fast
3D distance field computation using graphics hardware. Com-
puter Graphics Forum 23, 10, 557-566.

Appendix

Detailed Explanation for Theorem 2

We give a detailed explanation for our closest-point bound proved
in Theorem 2. From Theorem 2, we know that there are two pos-
sible cases. In the first case, the closest point P’ lies inside the tri-
angle and the bound can be computed directly to be /4K d + K?2.
However, in the second case, to find the maximum possible value
of P'Q, we have to consider all possible orientations of the trian-
gle with respect to OP’. Let « denote the angle the triangle makes
with OP’; « can vary from 90° to 180° (the two extremes and a
general case are shown in Fig. 19). Angle « cannot be less than 90°
because then P’ will no longer be the closest point on the triangle.
The angle subtended by P’Q at the center of the sphere, denoted by
0, monotonically decreases from 0, t0 0pin, as « increases from
90° to 180°. The values of 6,44 and 0,5, can be computed to be

sin~ (Y49) and sin~" (5) from Fig 19(a) and Fig 19(b)

respectively.

Consider the general case when 90 < o < 180. P’ can be com-
puted to be 1/(d + K)2 + d? — 2d(d + K) cos 6 from the cosine
rule on triangle OP’'Q. P’'Q will be maximized when the term
2d(d + K) cos 6 is minimized, since all the other terms in the ex-
pression are positive. 2d(d + K) cos 6 is minimized when 6 is the
maximum possible value in the range [0min, Omaz]. Thus P'Q is
maximized when 6 = 0,,,4.; the extreme case is shown in Fig 19(a)
with maximum value of P’Q again being /4K d + K2 as shown
in Fig 11(a).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

